Academic Journal

An online human–robot collaborative grinding state recognition approach based on contact dynamics and LSTM

التفاصيل البيبلوغرافية
العنوان: An online human–robot collaborative grinding state recognition approach based on contact dynamics and LSTM
المؤلفون: Shouyan Chen, Xinqi Sun, Zhijia Zhao, Meng Xiao, Tao Zou
المصدر: Frontiers in Neurorobotics, Vol 16 (2022)
بيانات النشر: Frontiers Media S.A., 2022.
سنة النشر: 2022
المجموعة: LCC:Neurosciences. Biological psychiatry. Neuropsychiatry
مصطلحات موضوعية: contact dynamics, online classification, collaborative grinding, physical human–robot collaboration, human intent classification, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
الوصف: Collaborative state recognition is a critical issue for physical human–robot collaboration (PHRC). This paper proposes a contact dynamics-based state recognition method to identify the human–robot collaborative grinding state. The main idea of the proposed approach is to distinguish between the human–robot contact and the robot–environment contact. To achieve this, dynamic models of both these contacts are first established to identify the difference in dynamics between the human–robot contact and the robot–environment contact. Considering the reaction speed required for human–robot collaborative state recognition, feature selections based on Spearman's correlation and random forest recursive feature elimination are conducted to reduce data redundancy and computational burden. Long short-term memory (LSTM) is then used to construct a collaborative state classifier. Experimental results illustrate that the proposed method can achieve a recognition accuracy of 97% in a period of 5 ms and 99% in a period of 40 ms.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1662-5218
Relation: https://www.frontiersin.org/articles/10.3389/fnbot.2022.971205/full; https://doaj.org/toc/1662-5218
DOI: 10.3389/fnbot.2022.971205
URL الوصول: https://doaj.org/article/349f88c0d4fa429fab474d33f854b947
رقم الانضمام: edsdoj.349f88c0d4fa429fab474d33f854b947
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:16625218
DOI:10.3389/fnbot.2022.971205