Academic Journal

Modeling and Profiling of Aggregated Industrial Network Traffic

التفاصيل البيبلوغرافية
العنوان: Modeling and Profiling of Aggregated Industrial Network Traffic
المؤلفون: Mehrzad Lavassani, Johan Åkerberg, Mats Björkman
المصدر: Applied Sciences, Vol 12, Iss 2, p 667 (2022)
بيانات النشر: MDPI AG, 2022.
سنة النشر: 2022
المجموعة: LCC:Technology
LCC:Engineering (General). Civil engineering (General)
LCC:Biology (General)
LCC:Physics
LCC:Chemistry
مصطلحات موضوعية: industrial network, aggregated traffic classes, traffic modeling, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
الوصف: The industrial network infrastructures are transforming to a horizontal architecture to enable data availability for advanced applications and enhance flexibility for integrating new technologies. The uninterrupted operation of the legacy systems needs to be ensured by safeguarding their requirements in network configuration and resource management. Network traffic modeling is essential in understanding the ongoing communication for resource estimation and configuration management. The presented work proposes a two-step approach for modeling aggregated traffic classes of brownfield installation. It first detects the repeated work-cycles and then aims to identify the operational states to profile their characteristics. The performance and influence of the approach are evaluated and validated in two experimental setups with data collected from an industrial plant in operation. The comparative results show that the proposed method successfully captures the temporal and spatial dynamics of the network traffic for characterization of various communication states in the operational work-cycles.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2076-3417
Relation: https://www.mdpi.com/2076-3417/12/2/667; https://doaj.org/toc/2076-3417
DOI: 10.3390/app12020667
URL الوصول: https://doaj.org/article/32c84b31fc0e476da4c0c70a406319a1
رقم الانضمام: edsdoj.32c84b31fc0e476da4c0c70a406319a1
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20763417
DOI:10.3390/app12020667