Academic Journal
A comprehensive comparison of bias correction methods in climate model simulations: Application on ERA5-Land across different temporal resolutions
العنوان: | A comprehensive comparison of bias correction methods in climate model simulations: Application on ERA5-Land across different temporal resolutions |
---|---|
المؤلفون: | Pranav Dhawan, Daniele Dalla Torre, Majid Niazkar, Konstantinos Kaffas, Michele Larcher, Maurizio Righetti, Andrea Menapace |
المصدر: | Heliyon, Vol 10, Iss 23, Pp e40352- (2024) |
بيانات النشر: | Elsevier, 2024. |
سنة النشر: | 2024 |
المجموعة: | LCC:Science (General) LCC:Social sciences (General) |
مصطلحات موضوعية: | Climate models, Bias correction, ERA5-Land reanalysis, Machine learning, Precipitation, Temperature, Science (General), Q1-390, Social sciences (General), H1-99 |
الوصف: | Climate data plays a crucial role in water resources management, which is becoming an increasingly relevant asset in all types of hydrological analysis not only for climate change studies but for various horizon forecasting. Though the ever-improving accuracy of climate models' spatial and temporal resolution has surged the validity of their outputs, the products of global and regional climate models need to be corrected to be reliably used for local purposes. Here, we propose a comprehensive analysis of statistical univariate and multivariate, as well as machine learning methods for bias correction, which are compared on different temporal scales, ranging from hourly time steps to monthly aggregations, in an environment of complex Alpine orthography, using ERA5-Land reanalysis data. The results reveal different trends in the performance of the bias correction methods for precipitation and temperature across the various time resolutions. |
نوع الوثيقة: | article |
وصف الملف: | electronic resource |
اللغة: | English |
تدمد: | 2405-8440 |
Relation: | http://www.sciencedirect.com/science/article/pii/S2405844024163839; https://doaj.org/toc/2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e40352 |
URL الوصول: | https://doaj.org/article/3240d1985b8b4519b107ae272f66f334 |
رقم الانضمام: | edsdoj.3240d1985b8b4519b107ae272f66f334 |
قاعدة البيانات: | Directory of Open Access Journals |
تدمد: | 24058440 |
---|---|
DOI: | 10.1016/j.heliyon.2024.e40352 |