Academic Journal

SkyGPT: Probabilistic ultra-short-term solar forecasting using synthetic sky images from physics-constrained VideoGPT

التفاصيل البيبلوغرافية
العنوان: SkyGPT: Probabilistic ultra-short-term solar forecasting using synthetic sky images from physics-constrained VideoGPT
المؤلفون: Yuhao Nie, Eric Zelikman, Andea Scott, Quentin Paletta, Adam Brandt
المصدر: Advances in Applied Energy, Vol 14, Iss , Pp 100172- (2024)
بيانات النشر: Elsevier, 2024.
سنة النشر: 2024
مصطلحات موضوعية: Cloud motion prediction, Probabilistic solar forecasting, Deep learning, Generative models, Stochastic video prediction, Sky images, Energy industries. Energy policy. Fuel trade, HD9502-9502.5
الوصف: The variability of solar photovoltaic (PV) power output, driven by rapidly changing cloud dynamics, hinders the transition to reliable renewable energy systems. Information on future sky conditions, especially cloud coverage, holds the promise for improving PV output forecasting. Leveraging recent advances in generative artificial intelligence (AI), we introduce SkyGPT, a physics-constrained stochastic video prediction model, which predicts plausible future images of the sky using historical sky images. We show that SkyGPT can accurately capture cloud dynamics, producing highly realistic and diverse future sky images. We further demonstrate its efficacy in 15-minute-ahead probabilistic PV output forecasting using real-world power generation data from a 30-kW rooftop PV system. By coupling SkyGPT with a U-Net-based PV power prediction model, we observe superior prediction reliability and sharpness compared with several benchmark methods. The propose approach achieves a continuous ranked probability score (CRPS) of 2.81 kW, outperforming a classic convolutional neural network (CNN) baseline by 13% and the smart persistence model by 23%. The findings of this research could aid efficient and resilient management of solar electricity generation, particularly as we transition to renewable-heavy grids. The study also provides valuable insights into stochastic cloud modeling for a broad research community, encompassing fields such as solar energy meteorology and atmospheric sciences.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2666-7924
Relation: http://www.sciencedirect.com/science/article/pii/S2666792424000106; https://doaj.org/toc/2666-7924
DOI: 10.1016/j.adapen.2024.100172
URL الوصول: https://doaj.org/article/3224e1d0874049d5ac45899e009f8271
رقم الانضمام: edsdoj.3224e1d0874049d5ac45899e009f8271
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:26667924
DOI:10.1016/j.adapen.2024.100172