Academic Journal

Predictive Analytics of In-Game Transactions: Tokenized Player History and Self-Attention Techniques

التفاصيل البيبلوغرافية
العنوان: Predictive Analytics of In-Game Transactions: Tokenized Player History and Self-Attention Techniques
المؤلفون: Milos A. Kovacevic, Marko D. Pesovic, Zoran Z. Petrovic, Zoran S. Pucanovic
المصدر: IEEE Access, Vol 12, Pp 149263-149271 (2024)
بيانات النشر: IEEE, 2024.
سنة النشر: 2024
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: In-game purchases, prediction, self-attention, transformers, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: Players’ purchases in free-to-play online games often serve as crucial indicators of user engagement and behavior. Understanding these purchases not only enhances the personalization of the gaming experience but also enables the optimization of game monetization strategies. This paper introduces a methodology for predicting players’ purchases using Transformers neural networks based on the Self-Attention technique, customized for processing sequential data. By discretizing the values of features representing a player’s history and leveraging tokenized inputs related to the discretized history, the methodology aims to forecast whether a player will make a purchase within the next 3, 5, or 7 days. The proposed approach is further validated by comparing its performance with commonly adopted machine learning techniques such as Random Forest, XGBoost, and Multilayer Perceptron, demonstrating its advantages in predicting player purchases.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2169-3536
Relation: https://ieeexplore.ieee.org/document/10713356/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2024.3477624
URL الوصول: https://doaj.org/article/308310607ba84f5aa03a7a9d75ea7650
رقم الانضمام: edsdoj.308310607ba84f5aa03a7a9d75ea7650
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21693536
DOI:10.1109/ACCESS.2024.3477624