Academic Journal

Applications for Unbounded Convergences in Banach Lattices

التفاصيل البيبلوغرافية
العنوان: Applications for Unbounded Convergences in Banach Lattices
المؤلفون: Zhangjun Wang, Zili Chen
المصدر: Fractal and Fractional, Vol 6, Iss 4, p 199 (2022)
بيانات النشر: MDPI AG, 2022.
سنة النشر: 2022
المجموعة: LCC:Thermodynamics
LCC:Mathematics
LCC:Analysis
مصطلحات موضوعية: Banach lattice, unbounded convergence, L-weakly compact operator, M-weakly compact operator, statistical unbounded convergence, Thermodynamics, QC310.15-319, Mathematics, QA1-939, Analysis, QA299.6-433
الوصف: Several recent papers investigated unbounded convergences in Banach lattices. The focus of this paper is to apply the results of unbounded convergence to the classical Banach lattice theory from a new perspective. Combining all unbounded convergences, including unbounded order (norm, absolute weak, absolute weak*) convergence, we characterize L-weakly compact sets, L-weakly compact operators and M-weakly compact operators on Banach lattices. For applications, we introduce so-called statistical-unbounded convergence and use these convergences to describe KB-spaces and reflexive Banach lattices.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2504-3110
Relation: https://www.mdpi.com/2504-3110/6/4/199; https://doaj.org/toc/2504-3110
DOI: 10.3390/fractalfract6040199
URL الوصول: https://doaj.org/article/2faf1eb0936647c5a7625dcc6ea41b0d
رقم الانضمام: edsdoj.2faf1eb0936647c5a7625dcc6ea41b0d
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:25043110
DOI:10.3390/fractalfract6040199