Academic Journal

Early prediction of heart disease with data analysis using supervised learning with stochastic gradient boosting

التفاصيل البيبلوغرافية
العنوان: Early prediction of heart disease with data analysis using supervised learning with stochastic gradient boosting
المؤلفون: Anil Pandurang Jawalkar, Pandla Swetcha, Nuka Manasvi, Pakki Sreekala, Samudrala Aishwarya, Potru Kanaka Durga Bhavani, Pendem Anjani
المصدر: Journal of Engineering and Applied Science, Vol 70, Iss 1, Pp 1-18 (2023)
بيانات النشر: SpringerOpen, 2023.
سنة النشر: 2023
المجموعة: LCC:Engineering (General). Civil engineering (General)
مصطلحات موضوعية: Heart disease, Machine learning, Decision tree, Random forest, Stochastic gradient boosting, Loss optimization, Engineering (General). Civil engineering (General), TA1-2040
الوصف: Abstract Heart diseases are consistently ranked among the top causes of mortality on a global scale. Early detection and accurate heart disease prediction can help effectively manage and prevent the disease. However, the traditional methods have failed to improve heart disease classification performance. So, this article proposes a machine learning approach for heart disease prediction (HDP) using a decision tree-based random forest (DTRF) classifier with loss optimization. Initially, preprocessing of the dataset with patient records with known labels is performed for the presence or absence of heart disease records. Then, train a DTRF classifier on the dataset using stochastic gradient boosting (SGB) loss optimization technique and evaluate the classifier’s performance using a separate test dataset. The results demonstrate that the proposed HDP-DTRF approach resulted in 86% of precision, 86% of recall, 85% of F1-score, and 96% of accuracy on publicly available real-world datasets, which are higher than traditional methods.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1110-1903
2536-9512
Relation: https://doaj.org/toc/1110-1903; https://doaj.org/toc/2536-9512
DOI: 10.1186/s44147-023-00280-y
URL الوصول: https://doaj.org/article/a2d4f3e162944bdfa8f18a483e1f3ae4
رقم الانضمام: edsdoj.2d4f3e162944bdfa8f18a483e1f3ae4
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:11101903
25369512
DOI:10.1186/s44147-023-00280-y