Academic Journal

Optimal Design of Traction Gear Modification of High-Speed EMU Based on Radial Basis Function Neural Network

التفاصيل البيبلوغرافية
العنوان: Optimal Design of Traction Gear Modification of High-Speed EMU Based on Radial Basis Function Neural Network
المؤلفون: Zhaoping Tang, Manyu Wang, Yutao Hu, Ziyuan Mei, Jianping Sun, Li Yan
المصدر: IEEE Access, Vol 8, Pp 134619-134629 (2020)
بيانات النشر: IEEE, 2020.
سنة النشر: 2020
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: Traction gear of EMU, RBF neural network, multi-island genetic algorithm, optimal design of modification, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: The dynamic characteristics of the traction gear transmission system have a great influence on the safety, comfort, and reliability of EMU (electric multiple units). Combining the methods of theoretical analysis, numerical simulation, and optimization design theory, establishing a parameterized gear modification model. Meanwhile, designing reasonable shape modification schemes and parameters. The dynamic characteristics, vibration response characteristics, and acoustic response characteristics of gear meshing of CRH380A high-speed EMU under continuous traction conditions are analyzed. The corresponding relationship between gear modification parameters and gear transmission radiation noise is approximated by finite element simulation data and RBF (radial basis function) neural network. Using a multi-island genetic algorithm to optimize gear modification parameters to minimize gear transmission noise, further seeking to meet the low-noise modification design of high-speed train traction helical gear transmission system under continuous operating conditions method.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2169-3536
Relation: https://ieeexplore.ieee.org/document/9133592/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2020.3007449
URL الوصول: https://doaj.org/article/2d411064692d4c608419ac42ffa99c1e
رقم الانضمام: edsdoj.2d411064692d4c608419ac42ffa99c1e
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21693536
DOI:10.1109/ACCESS.2020.3007449