Academic Journal

A New Missing Data Imputation Algorithm Applied to Electrical Data Loggers

التفاصيل البيبلوغرافية
العنوان: A New Missing Data Imputation Algorithm Applied to Electrical Data Loggers
المؤلفون: Concepción Crespo Turrado, Fernando Sánchez Lasheras, José Luis Calvo-Rollé, Andrés José Piñón-Pazos, Francisco Javier de Cos Juez
المصدر: Sensors, Vol 15, Iss 12, Pp 31069-31082 (2015)
بيانات النشر: MDPI AG, 2015.
سنة النشر: 2015
المجموعة: LCC:Chemical technology
مصطلحات موضوعية: missing data imputation, multivariate imputation by chained equations (MICE), Multivariate adaptive regression splines (MARS), quality of electric supply, voltage, current, power factor, Chemical technology, TP1-1185
الوصف: Nowadays, data collection is a key process in the study of electrical power networks when searching for harmonics and a lack of balance among phases. In this context, the lack of data of any of the main electrical variables (phase-to-neutral voltage, phase-to-phase voltage, and current in each phase and power factor) adversely affects any time series study performed. When this occurs, a data imputation process must be accomplished in order to substitute the data that is missing for estimated values. This paper presents a novel missing data imputation method based on multivariate adaptive regression splines (MARS) and compares it with the well-known technique called multivariate imputation by chained equations (MICE). The results obtained demonstrate how the proposed method outperforms the MICE algorithm.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1424-8220
Relation: http://www.mdpi.com/1424-8220/15/12/29842; https://doaj.org/toc/1424-8220
DOI: 10.3390/s151229842
URL الوصول: https://doaj.org/article/2ce7742aeed943069d878694ddde714f
رقم الانضمام: edsdoj.2ce7742aeed943069d878694ddde714f
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14248220
DOI:10.3390/s151229842