Academic Journal

Hierarchical Task Planning for Power Line Flow Regulation

التفاصيل البيبلوغرافية
العنوان: Hierarchical Task Planning for Power Line Flow Regulation
المؤلفون: Chenxi Wang, Youtian Du, Yanhao Huang, Yuanlin Chang, Zihao Guo
المصدر: CSEE Journal of Power and Energy Systems, Vol 10, Iss 1, Pp 29-40 (2024)
بيانات النشر: China electric power research institute, 2024.
سنة النشر: 2024
المجموعة: LCC:Technology
LCC:Physics
مصطلحات موضوعية: Knowledge graph, power line flow regulation reinforcement learning, task planning, Technology, Physics, QC1-999
الوصف: The complexity and uncertainty in power systems cause great challenges to controlling power grids. As a popular data-driven technique, deep reinforcement learning (DRL) attracts attention in the control of power grids. However, DRL has some inherent drawbacks in terms of data efficiency and explainability. This paper presents a novel hierarchical task planning (HTP) approach, bridging planning and DRL, to the task of power line flow regulation. First, we introduce a three-level task hierarchy to model the task and model the sequence of task units on each level as a task planning-Markov decision processes (TP-MDPs). Second, we model the task as a sequential decision-making problem and introduce a higher planner and a lower planner in HTP to handle different levels of task units. In addition, we introduce a two-layer knowledge graph that can update dynamically during the planning procedure to assist HTP. Experimental results conducted on the IEEE 118-bus and IEEE 300-bus systems demonstrate our HTP approach outperforms proximal policy optimization, a state-of-the-art deep reinforcement learning (DRL) approach, improving efficiency by 26.16% and 6.86% on both systems.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2096-0042
Relation: https://ieeexplore.ieee.org/document/10375975/; https://doaj.org/toc/2096-0042
DOI: 10.17775/CSEEJPES.2023.00620
URL الوصول: https://doaj.org/article/2ace01d5cea8452f9e72e1581b05e3e6
رقم الانضمام: edsdoj.2ace01d5cea8452f9e72e1581b05e3e6
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20960042
DOI:10.17775/CSEEJPES.2023.00620