Academic Journal

Deep Learning Enhanced Multisensor Data Fusion for Building Assessment Using Multispectral Voxels and Self-Organizing Maps

التفاصيل البيبلوغرافية
العنوان: Deep Learning Enhanced Multisensor Data Fusion for Building Assessment Using Multispectral Voxels and Self-Organizing Maps
المؤلفون: Javier Raimundo, Serafin Lopez-Cuervo Medina, Julian Aguirre de Mata, Tomás Ramón Herrero-Tejedor, Enrique Priego-de-los-Santos
المصدر: Heritage, Vol 7, Iss 2, Pp 1043-1073 (2024)
بيانات النشر: MDPI AG, 2024.
سنة النشر: 2024
المجموعة: LCC:Archaeology
مصطلحات موضوعية: multisensor, data fusion, voxel, multispectral, building, point cloud, Archaeology, CC1-960
الوصف: Efforts in the domain of building studies involve the use of a diverse array of geomatic sensors, some providing invaluable information in the form of three-dimensional point clouds and associated registered properties. However, managing the vast amounts of data generated by these sensors presents significant challenges. To ensure the effective use of multisensor data in the context of cultural heritage preservation, it is imperative that multisensor data fusion methods be designed in such a way as to facilitate informed decision-making by curators and stakeholders. We propose a novel approach to multisensor data fusion using multispectral voxels, which enable the application of deep learning algorithms as the self-organizing maps to identify and exploit the relationships between the different sensor data. Our results indicate that this approach provides a comprehensive view of the building structure and its potential pathologies, and holds great promise for revolutionizing the study of historical buildings and their potential applications in the field of cultural heritage preservation.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2571-9408
Relation: https://www.mdpi.com/2571-9408/7/2/51; https://doaj.org/toc/2571-9408
DOI: 10.3390/heritage7020051
URL الوصول: https://doaj.org/article/29cf2e10bef14c7fbc8826b61ae33d87
رقم الانضمام: edsdoj.29cf2e10bef14c7fbc8826b61ae33d87
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:25719408
DOI:10.3390/heritage7020051