Academic Journal

Enhancing SRF cavity stability and minimizing detuning with data-driven resonance control based on dynamic mode decomposition

التفاصيل البيبلوغرافية
العنوان: Enhancing SRF cavity stability and minimizing detuning with data-driven resonance control based on dynamic mode decomposition
المؤلفون: Faya Wang
المصدر: AIP Advances, Vol 13, Iss 7, Pp 075104-075104-6 (2023)
بيانات النشر: AIP Publishing LLC, 2023.
سنة النشر: 2023
المجموعة: LCC:Physics
مصطلحات موضوعية: Physics, QC1-999
الوصف: Effective resonance control of superconducting radio frequency (SRF) cavities is critical for large machines like LCLS-II, as failure to achieve proper control can result in increased RF power consumption, higher cryogenic heat loads, and increased costs. To address this challenge, we have developed a machine learning (ML) model based on the dynamic mode decomposition method to represent the forced cavity dynamics. Using this model, we designed a model predictive controller (MPC) and demonstrated through simulation that the MPC can effectively stabilize the amplitude and phase of SRF cavities using only a frequency actuator, even in the presence of multiple mechanical modes. The lightweight and explicit ML model makes the controller suitable for direct implementation on field-programmable gate arrays, unlocking the full potential of SRF linacs like LCLS-II, enabling higher beam power and energy, and also serving as an advanced motion controller for various applications, such as photon beamlines and storage rings.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2158-3226
Relation: https://doaj.org/toc/2158-3226
DOI: 10.1063/5.0154213
URL الوصول: https://doaj.org/article/279cb2a1e4fb468cb9b012ec1ca172d1
رقم الانضمام: edsdoj.279cb2a1e4fb468cb9b012ec1ca172d1
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21583226
DOI:10.1063/5.0154213