Academic Journal

Local Model-Agnostic Explanations for Black-box Recommender Systems Using Interaction Graphs and Link Prediction Techniques

التفاصيل البيبلوغرافية
العنوان: Local Model-Agnostic Explanations for Black-box Recommender Systems Using Interaction Graphs and Link Prediction Techniques
المؤلفون: Marta Caro-Martínez, Guillermo Jiménez-Díaz, Juan A. Recio-García
المصدر: International Journal of Interactive Multimedia and Artificial Intelligence, Vol 8, Iss 2, Pp 202-212 (2023)
بيانات النشر: Universidad Internacional de La Rioja (UNIR), 2023.
سنة النشر: 2023
المجموعة: LCC:Technology
مصطلحات موضوعية: artificial intelligence, graphs, link prediction, recommendation systems, Technology
الوصف: Explanations in recommender systems are a requirement to improve users’ trust and experience. Traditionally, explanations in recommender systems are derived from their internal data regarding ratings, item features, and user profiles. However, this information is not available in black-box recommender systems that lack sufficient data transparency. This current work proposes a local model-agnostic, explanation-by-example method for recommender systems based on knowledge graphs to leverage this knowledge requirement. It only requires information about the interactions between users and items. Through the proper transformation of these knowledge graphs into item-based and user-based structures, link prediction techniques are applied to find similarities between the nodes and to identify explanatory items for the user’s recommendation. Experimental evaluation demonstrates that these knowledge graphs are more effective than classical content-based explanation approaches but have lower information requirements, making them more suitable for black-box recommender systems.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1989-1660
Relation: https://www.ijimai.org/journal/bibcite/reference/3063; https://doaj.org/toc/1989-1660
DOI: 10.9781/ijimai.2021.12.001
URL الوصول: https://doaj.org/article/c271a0ba370f4b298b380375f02c896c
رقم الانضمام: edsdoj.271a0ba370f4b298b380375f02c896c
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:19891660
DOI:10.9781/ijimai.2021.12.001