Academic Journal

Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model

التفاصيل البيبلوغرافية
العنوان: Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model
المؤلفون: Wei Sun, Yujun He, Hong Chang
المصدر: Energies, Vol 8, Iss 2, Pp 939-959 (2015)
بيانات النشر: MDPI AG, 2015.
سنة النشر: 2015
المجموعة: LCC:Technology
مصطلحات موضوعية: fossil fuel energy forecasting, power generation, LSSVM, quantum harmony search algorithm (QHSA), Technology
الوصف: Accurate forecasting of fossil fuel energy consumption for power generation is important and fundamental for rational power energy planning in the electricity industry. The least squares support vector machine (LSSVM) is a powerful methodology for solving nonlinear forecasting issues with small samples. The key point is how to determine the appropriate parameters which have great effect on the performance of LSSVM model. In this paper, a novel hybrid quantum harmony search algorithm-based LSSVM (QHSA-LSSVM) energy forecasting model is proposed. The QHSA which combines the quantum computation theory and harmony search algorithm is applied to searching the optimal values of and C in LSSVM model to enhance the learning and generalization ability. The case study on annual fossil fuel energy consumption for power generation in China shows that the proposed model outperforms other four comparative models, namely regression, grey model (1, 1) (GM (1, 1)), back propagation (BP) and LSSVM, in terms of prediction accuracy and forecasting risk.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1996-1073
Relation: http://www.mdpi.com/1996-1073/8/2/939; https://doaj.org/toc/1996-1073
DOI: 10.3390/en8020939
URL الوصول: https://doaj.org/article/2487d1e2c29a4bb7bc2f51d4d6027aa9
رقم الانضمام: edsdoj.2487d1e2c29a4bb7bc2f51d4d6027aa9
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:19961073
DOI:10.3390/en8020939