Academic Journal

Effective numerical technique for nonlinear Caputo-Fabrizio systems of fractional Volterra integro-differential equations in Hilbert space

التفاصيل البيبلوغرافية
العنوان: Effective numerical technique for nonlinear Caputo-Fabrizio systems of fractional Volterra integro-differential equations in Hilbert space
المؤلفون: Fatima Youbi, Shaher Momani, Shatha Hasan, Mohammed Al-Smadi
المصدر: Alexandria Engineering Journal, Vol 61, Iss 3, Pp 1778-1786 (2022)
بيانات النشر: Elsevier, 2022.
سنة النشر: 2022
المجموعة: LCC:Engineering (General). Civil engineering (General)
مصطلحات موضوعية: Iterative reproducing kernel algorithm, Caputo-Fabrizio operator, Fractional integro-differntial equations, Stability analysis, Numerical solution, Engineering (General). Civil engineering (General), TA1-2040
الوصف: The point of this paper is to analyze and investigate the analytic-approximate solutions for fractional system of Volterra integro-differential equations in framework of Caputo-Fabrizio operator. The methodology relies on creating the reproducing kernel functions to gain analytical solutions in a uniform form of a rapidly convergent series in the Hilbert space. Using the Gram-Schmidt orthonomalization process, the orthonormal basis system is constructed in a dense compact domain to encompass the Fourier series expansion in view of reproducing kernel properties. Besides, convergence and error analysis of the proposed technique are discussed. For this purpose, several numerical examples are tested to demonstrate the great feasibility and efficiency of the present method and to support theoretical aspect as well. From a numerical point of view, the acquired solutions simulation indicates that the methodology used is sound, straightforward, and appropriate to deal with many physical issues in light of Caputo-Fabrizio derivatives.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1110-0168
Relation: http://www.sciencedirect.com/science/article/pii/S1110016821004488; https://doaj.org/toc/1110-0168
DOI: 10.1016/j.aej.2021.06.086
URL الوصول: https://doaj.org/article/21e642080b7b436ba04c0472ff648b47
رقم الانضمام: edsdoj.21e642080b7b436ba04c0472ff648b47
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:11100168
DOI:10.1016/j.aej.2021.06.086