التفاصيل البيبلوغرافية
العنوان: |
More About the Height of Faces in 3-Polytopes |
المؤلفون: |
Borodin Oleg V., Bykov Mikhail A., Ivanova Anna O. |
المصدر: |
Discussiones Mathematicae Graph Theory, Vol 38, Iss 2, Pp 443-453 (2018) |
بيانات النشر: |
University of Zielona Góra, 2018. |
سنة النشر: |
2018 |
المجموعة: |
LCC:Mathematics |
مصطلحات موضوعية: |
plane map, planar graph, 3-polytope, structural properties, height of face, 05c15, Mathematics, QA1-939 |
الوصف: |
The height of a face in a 3-polytope is the maximum degree of its incident vertices, and the height of a 3-polytope, h, is the minimum height of its faces. A face is pyramidal if it is either a 4-face incident with three 3-vertices, or a 3-face incident with two vertices of degree at most 4. If pyramidal faces are allowed, then h can be arbitrarily large, so we assume the absence of pyramidal faces in what follows. |
نوع الوثيقة: |
article |
وصف الملف: |
electronic resource |
اللغة: |
English |
تدمد: |
2083-5892 |
Relation: |
https://doaj.org/toc/2083-5892 |
DOI: |
10.7151/dmgt.2014 |
URL الوصول: |
https://doaj.org/article/1d9f4239bfe342c2b5f59830d2d9894f |
رقم الانضمام: |
edsdoj.1d9f4239bfe342c2b5f59830d2d9894f |
قاعدة البيانات: |
Directory of Open Access Journals |