Academic Journal

More About the Height of Faces in 3-Polytopes

التفاصيل البيبلوغرافية
العنوان: More About the Height of Faces in 3-Polytopes
المؤلفون: Borodin Oleg V., Bykov Mikhail A., Ivanova Anna O.
المصدر: Discussiones Mathematicae Graph Theory, Vol 38, Iss 2, Pp 443-453 (2018)
بيانات النشر: University of Zielona Góra, 2018.
سنة النشر: 2018
المجموعة: LCC:Mathematics
مصطلحات موضوعية: plane map, planar graph, 3-polytope, structural properties, height of face, 05c15, Mathematics, QA1-939
الوصف: The height of a face in a 3-polytope is the maximum degree of its incident vertices, and the height of a 3-polytope, h, is the minimum height of its faces. A face is pyramidal if it is either a 4-face incident with three 3-vertices, or a 3-face incident with two vertices of degree at most 4. If pyramidal faces are allowed, then h can be arbitrarily large, so we assume the absence of pyramidal faces in what follows.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2083-5892
Relation: https://doaj.org/toc/2083-5892
DOI: 10.7151/dmgt.2014
URL الوصول: https://doaj.org/article/1d9f4239bfe342c2b5f59830d2d9894f
رقم الانضمام: edsdoj.1d9f4239bfe342c2b5f59830d2d9894f
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20835892
DOI:10.7151/dmgt.2014