Academic Journal
A multi-scale dense residual correlation network for remote sensing scene classification
العنوان: | A multi-scale dense residual correlation network for remote sensing scene classification |
---|---|
المؤلفون: | Wei Dai, Furong Shi, Xinyu Wang, Haixia Xu, Liming Yuan, Xianbin Wen |
المصدر: | Scientific Reports, Vol 14, Iss 1, Pp 1-20 (2024) |
بيانات النشر: | Nature Portfolio, 2024. |
سنة النشر: | 2024 |
المجموعة: | LCC:Medicine LCC:Science |
مصطلحات موضوعية: | Convolutional neural network, Feature extraction, Dense residual connection, Attention, Medicine, Science |
الوصف: | Abstract Most existing scene classification methods based on remote sensing images tend to ignore important interactive information at different levels in the image. We propose an effective remote sensing scene classification method named multi-scale dense residual correlation network. The method is divided into three parts. First, the multi-stream feature extraction module is introduced which effectively utilizes features at different scales to extract different levels of information. Secondly, the dense residual connected feature fusion technology is proposed, which allows for a wide range of feature fusion. The Correlation Attention Module learn feature representations at multiple levels. This improves classification performance. The method outperforms existing algorithms in terms of effectiveness and accuracy, achieving state-of-the-art results on widely used remote sensing scene classification benchmarks. |
نوع الوثيقة: | article |
وصف الملف: | electronic resource |
اللغة: | English |
تدمد: | 2045-2322 |
Relation: | https://doaj.org/toc/2045-2322 |
DOI: | 10.1038/s41598-024-73252-8 |
URL الوصول: | https://doaj.org/article/e1bd8ba7eff540a7b8bc8f609ff214e1 |
رقم الانضمام: | edsdoj.1bd8ba7eff540a7b8bc8f609ff214e1 |
قاعدة البيانات: | Directory of Open Access Journals |
تدمد: | 20452322 |
---|---|
DOI: | 10.1038/s41598-024-73252-8 |