Academic Journal

A multi-scale dense residual correlation network for remote sensing scene classification

التفاصيل البيبلوغرافية
العنوان: A multi-scale dense residual correlation network for remote sensing scene classification
المؤلفون: Wei Dai, Furong Shi, Xinyu Wang, Haixia Xu, Liming Yuan, Xianbin Wen
المصدر: Scientific Reports, Vol 14, Iss 1, Pp 1-20 (2024)
بيانات النشر: Nature Portfolio, 2024.
سنة النشر: 2024
المجموعة: LCC:Medicine
LCC:Science
مصطلحات موضوعية: Convolutional neural network, Feature extraction, Dense residual connection, Attention, Medicine, Science
الوصف: Abstract Most existing scene classification methods based on remote sensing images tend to ignore important interactive information at different levels in the image. We propose an effective remote sensing scene classification method named multi-scale dense residual correlation network. The method is divided into three parts. First, the multi-stream feature extraction module is introduced which effectively utilizes features at different scales to extract different levels of information. Secondly, the dense residual connected feature fusion technology is proposed, which allows for a wide range of feature fusion. The Correlation Attention Module learn feature representations at multiple levels. This improves classification performance. The method outperforms existing algorithms in terms of effectiveness and accuracy, achieving state-of-the-art results on widely used remote sensing scene classification benchmarks.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2045-2322
Relation: https://doaj.org/toc/2045-2322
DOI: 10.1038/s41598-024-73252-8
URL الوصول: https://doaj.org/article/e1bd8ba7eff540a7b8bc8f609ff214e1
رقم الانضمام: edsdoj.1bd8ba7eff540a7b8bc8f609ff214e1
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20452322
DOI:10.1038/s41598-024-73252-8