Academic Journal

Retrieving and processing agro-meteorological data from API-client sources using R software

التفاصيل البيبلوغرافية
العنوان: Retrieving and processing agro-meteorological data from API-client sources using R software
المؤلفون: Adrian A. Correndo, Luiz H. Moro Rosso, Ignacio A. Ciampitti
المصدر: BMC Research Notes, Vol 14, Iss 1, Pp 1-3 (2021)
بيانات النشر: BMC, 2021.
سنة النشر: 2021
المجموعة: LCC:Medicine
LCC:Biology (General)
LCC:Science (General)
مصطلحات موضوعية: Programming, Agriculture, Daymet, Nasapower, Chirps, Medicine, Biology (General), QH301-705.5, Science (General), Q1-390
الوصف: Abstract Objectives The main purpose of this publication is to help users (students, researchers, farmers, advisors, etc.) of weather data with agronomic purposes (e.g. crop yield forecast) to retrieve and process gridded weather data from different Application Programming Interfaces (API client) sources using R software. Data description This publication consists of a code-tutorial developed in R that is part of the data-curation process from numerous research projects carried out by the Ciampitti’s Lab, Department of Agronomy, Kansas State University. We make use of three weather databases for which specific libraries were developed in R language: (i) DAYMET (Thornton et al. in https://daymet.ornl.gov/ , 2019; https://github.com/bluegreen-labs/daymetr ), (ii) NASA-POWER (Sparks in J Open Source Softw 3:1035, 2018; https://github.com/ropensci/nasapower ), and (iii) Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) (Funk et al. in Sci Data 2:150066, 2015; https://github.com/ropensci/chirps ). The databases offer different weather variables, and vary in terms of spatio-temporal coverage and resolution. The tutorial shows and explain how to retrieve weather data from multiple locations at once using latitude and longitude coordinates. Additionally, it offers the possibility to create relevant variables and summaries that are of agronomic interest such as Shannon Diversity Index (SDI) of precipitation, abundant and well distributed rainfall (AWDR), growing degree days (GDD), crop heat units (CHU), extreme precipitation (EPE) and temperature events (ETE), reference evapotranspiration (ET0), among others.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1756-0500
Relation: https://doaj.org/toc/1756-0500
DOI: 10.1186/s13104-021-05622-8
URL الوصول: https://doaj.org/article/1ba6c2083b8446d9a820e935bde69625
رقم الانضمام: edsdoj.1ba6c2083b8446d9a820e935bde69625
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:17560500
DOI:10.1186/s13104-021-05622-8