Academic Journal

Neural Network Training With Asymmetric Crosspoint Elements

التفاصيل البيبلوغرافية
العنوان: Neural Network Training With Asymmetric Crosspoint Elements
المؤلفون: Murat Onen, Tayfun Gokmen, Teodor K. Todorov, Tomasz Nowicki, Jesús A. del Alamo, John Rozen, Wilfried Haensch, Seyoung Kim
المصدر: Frontiers in Artificial Intelligence, Vol 5 (2022)
بيانات النشر: Frontiers Media S.A., 2022.
سنة النشر: 2022
المجموعة: LCC:Electronic computers. Computer science
مصطلحات موضوعية: analog computing, DNN training, hardware accelerator architecture, neuromorphic accelerator, learning algorithm, Electronic computers. Computer science, QA75.5-76.95
الوصف: Analog crossbar arrays comprising programmable non-volatile resistors are under intense investigation for acceleration of deep neural network training. However, the ubiquitous asymmetric conductance modulation of practical resistive devices critically degrades the classification performance of networks trained with conventional algorithms. Here we first describe the fundamental reasons behind this incompatibility. Then, we explain the theoretical underpinnings of a novel fully-parallel training algorithm that is compatible with asymmetric crosspoint elements. By establishing a powerful analogy with classical mechanics, we explain how device asymmetry can be exploited as a useful feature for analog deep learning processors. Instead of conventionally tuning weights in the direction of the error function gradient, network parameters can be programmed to successfully minimize the total energy (Hamiltonian) of the system that incorporates the effects of device asymmetry. Our technique enables immediate realization of analog deep learning accelerators based on readily available device technologies.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2624-8212
Relation: https://www.frontiersin.org/articles/10.3389/frai.2022.891624/full; https://doaj.org/toc/2624-8212
DOI: 10.3389/frai.2022.891624
URL الوصول: https://doaj.org/article/1af78532c4534d7194bbf6db0d93a1e1
رقم الانضمام: edsdoj.1af78532c4534d7194bbf6db0d93a1e1
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:26248212
DOI:10.3389/frai.2022.891624