Academic Journal

EZFF: Python library for multi-objective parameterization and uncertainty quantification of interatomic forcefields for molecular dynamics

التفاصيل البيبلوغرافية
العنوان: EZFF: Python library for multi-objective parameterization and uncertainty quantification of interatomic forcefields for molecular dynamics
المؤلفون: Aravind Krishnamoorthy, Ankit Mishra, Deepak Kamal, Sungwook Hong, Ken-ichi Nomura, Subodh Tiwari, Aiichiro Nakano, Rajiv Kalia, Rampi Ramprasad, Priya Vashishta
المصدر: SoftwareX, Vol 13, Iss , Pp 100663- (2021)
بيانات النشر: Elsevier, 2021.
سنة النشر: 2021
المجموعة: LCC:Computer software
مصطلحات موضوعية: Molecular dynamics, Interatomic forcefield, Genetic algorithm, Global optimization, Computer software, QA76.75-76.765
الوصف: Parameterization of interatomic forcefields is a necessary first step in performing molecular dynamics simulations. This is a non-trivial global optimization problem involving quantification of multiple empirical variables against one or more properties. We present EZFF, a lightweight Python library for parameterization of several types of interatomic forcefields implemented in several molecular dynamics engines against multiple objectives using genetic-algorithm-based global optimization methods. The EZFF scheme provides unique functionality such as the parameterization of hybrid forcefields composed of multiple forcefield interactions as well as built-in quantification of uncertainty in forcefield parameters and can be easily extended to other forcefield functional forms as well as MD engines.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2352-7110
Relation: http://www.sciencedirect.com/science/article/pii/S235271102100008X; https://doaj.org/toc/2352-7110
DOI: 10.1016/j.softx.2021.100663
URL الوصول: https://doaj.org/article/19eafe76c03a4798b6d12bd2fe9a3ac6
رقم الانضمام: edsdoj.19eafe76c03a4798b6d12bd2fe9a3ac6
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:23527110
DOI:10.1016/j.softx.2021.100663