Academic Journal

Multimodal explainable artificial intelligence identifies patients with non-ischaemic cardiomyopathy at risk of lethal ventricular arrhythmias

التفاصيل البيبلوغرافية
العنوان: Multimodal explainable artificial intelligence identifies patients with non-ischaemic cardiomyopathy at risk of lethal ventricular arrhythmias
المؤلفون: Maarten Z. H. Kolk, Samuel Ruipérez-Campillo, Cornelis P. Allaart, Arthur A. M. Wilde, Reinoud E. Knops, Sanjiv M. Narayan, Fleur V. Y. Tjong, DEEP RISK investigators
المصدر: Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024)
بيانات النشر: Nature Portfolio, 2024.
سنة النشر: 2024
المجموعة: LCC:Medicine
LCC:Science
مصطلحات موضوعية: Medicine, Science
الوصف: Abstract The efficacy of an implantable cardioverter-defibrillator (ICD) in patients with a non-ischaemic cardiomyopathy for primary prevention of sudden cardiac death is increasingly debated. We developed a multimodal deep learning model for arrhythmic risk prediction that integrated late gadolinium enhanced (LGE) cardiac magnetic resonance imaging (MRI), electrocardiography (ECG) and clinical data. Short-axis LGE-MRI scans and 12-lead ECGs were retrospectively collected from a cohort of 289 patients prior to ICD implantation, across two tertiary hospitals. A residual variational autoencoder was developed to extract physiological features from LGE-MRI and ECG, and used as inputs for a machine learning model (DEEP RISK) to predict malignant ventricular arrhythmia onset. In the validation cohort, the multimodal DEEP RISK model predicted malignant ventricular arrhythmias with an area under the receiver operating characteristic curve (AUROC) of 0.84 (95% confidence interval (CI) 0.71–0.96), a sensitivity of 0.98 (95% CI 0.75–1.00) and a specificity of 0.73 (95% CI 0.58–0.97). The models trained on individual modalities exhibited lower AUROC values compared to DEEP RISK [MRI branch: 0.80 (95% CI 0.65–0.94), ECG branch: 0.54 (95% CI 0.26–0.82), Clinical branch: 0.64 (95% CI 0.39–0.87)]. These results suggest that a multimodal model achieves high prognostic accuracy in predicting ventricular arrhythmias in a cohort of patients with non-ischaemic systolic heart failure, using data collected prior to ICD implantation.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2045-2322
Relation: https://doaj.org/toc/2045-2322
DOI: 10.1038/s41598-024-65357-x
URL الوصول: https://doaj.org/article/137b8b372a564bd6aa87a49a54c51770
رقم الانضمام: edsdoj.137b8b372a564bd6aa87a49a54c51770
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20452322
DOI:10.1038/s41598-024-65357-x