التفاصيل البيبلوغرافية
العنوان: |
Haar wavelet method for solution of variable order linear fractional integro-differential equations |
المؤلفون: |
Rohul Amin, Kamal Shah, Hijaz Ahmad, Abdul Hamid Ganie, Abdel-Haleem Abdel-Aty, Thongchai Botmart |
المصدر: |
AIMS Mathematics, Vol 7, Iss 4, Pp 5431-5443 (2022) |
بيانات النشر: |
AIMS Press, 2022. |
سنة النشر: |
2022 |
المجموعة: |
LCC:Mathematics |
مصطلحات موضوعية: |
variable-order fractional calculus, fixed-point theory, gauss elimination method, haar wavelet, numerical approximation, Mathematics, QA1-939 |
الوصف: |
In this paper, we developed a computational Haar collocation scheme for the solution of fractional linear integro-differential equations of variable order. Fractional derivatives of variable order is described in the Caputo sense. The given problem is transformed into a system of algebraic equations using the proposed Haar technique. The results are obtained by solving this system with the Gauss elimination algorithm. Some examples are given to demonstrate the convergence of Haar collocation technique. For different collocation points, maximum absolute and mean square root errors are computed. The results demonstrate that the Haar approach is efficient for solving these equations. |
نوع الوثيقة: |
article |
وصف الملف: |
electronic resource |
اللغة: |
English |
تدمد: |
2473-6988 |
Relation: |
https://doaj.org/toc/2473-6988 |
DOI: |
10.3934/math.2022301?viewType=HTML |
DOI: |
10.3934/math.2022301 |
URL الوصول: |
https://doaj.org/article/1128a033146841e4977b68e8712a9f33 |
رقم الانضمام: |
edsdoj.1128a033146841e4977b68e8712a9f33 |
قاعدة البيانات: |
Directory of Open Access Journals |