Academic Journal

Impact of Misclassification Rates on Compression Efficiency of Red Blood Cell Images of Malaria Infection Using Deep Learning

التفاصيل البيبلوغرافية
العنوان: Impact of Misclassification Rates on Compression Efficiency of Red Blood Cell Images of Malaria Infection Using Deep Learning
المؤلفون: Yuhang Dong, W. David Pan, Dongsheng Wu
المصدر: Entropy, Vol 21, Iss 11, p 1062 (2019)
بيانات النشر: MDPI AG, 2019.
سنة النشر: 2019
المجموعة: LCC:Science
LCC:Astrophysics
LCC:Physics
مصطلحات موضوعية: lossless compression, pattern classification, machine learning, malaria infection, entropy, golomb–rice codes, Science, Astrophysics, QB460-466, Physics, QC1-999
الوصف: Malaria is a severe public health problem worldwide, with some developing countries being most affected. Reliable remote diagnosis of malaria infection will benefit from efficient compression of high-resolution microscopic images. This paper addresses a lossless compression of malaria-infected red blood cell images using deep learning. Specifically, we investigate a practical approach where images are first classified before being compressed using stacked autoencoders. We provide probabilistic analysis on the impact of misclassification rates on compression performance in terms of the information-theoretic measure of entropy. We then use malaria infection image datasets to evaluate the relations between misclassification rates and actually obtainable compressed bit rates using Golomb−Rice codes. Simulation results show that the joint pattern classification/compression method provides more efficient compression than several mainstream lossless compression techniques, such as JPEG2000, JPEG-LS, CALIC, and WebP, by exploiting common features extracted by deep learning on large datasets. This study provides new insight into the interplay between classification accuracy and compression bitrates. The proposed compression method can find useful telemedicine applications where efficient storage and rapid transfer of large image datasets is desirable.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1099-4300
Relation: https://www.mdpi.com/1099-4300/21/11/1062; https://doaj.org/toc/1099-4300
DOI: 10.3390/e21111062
URL الوصول: https://doaj.org/article/da0f16c9056248e2b17c3f4e4afe0e1d
رقم الانضمام: edsdoj.0f16c9056248e2b17c3f4e4afe0e1d
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:10994300
DOI:10.3390/e21111062