Academic Journal

A vision sensing-enhanced knowledge graph inference method for a healthy operation index in higher education

التفاصيل البيبلوغرافية
العنوان: A vision sensing-enhanced knowledge graph inference method for a healthy operation index in higher education
المؤلفون: Yu Nie, Xingpeng Luo, Yanghang Yu
المصدر: Mathematical Biosciences and Engineering, Vol 20, Iss 2, Pp 3731-3748 (2023)
بيانات النشر: AIMS Press, 2023.
سنة النشر: 2023
المجموعة: LCC:Biotechnology
LCC:Mathematics
مصطلحات موضوعية: knowledge graph, vision sensing, healthy operation index, data visualization, education management, Biotechnology, TP248.13-248.65, Mathematics, QA1-939
الوصف: We adopted the method of knowledge mapping to conduct in-depth visualization to propose the construction method of knowledge mapping-based inference of a healthy operation index in higher education (HOI-HE). For the first part, an improved named entity identification and relationship extraction method is developed, incorporating a vision sensing pre-training algorithm named BERT. For the second part, a multi-decision model-based knowledge graph is used to infer the HOI-HE score by using a multi-classifier ensemble learning approach. The combination of two parts constitutes a vision sensing-enhanced knowledge graph method. The functional modules of knowledge extraction, relational reasoning and triadic quality evaluation are integrated to provide the digital evaluation platform for the HOI-HE value. The vision sensing-enhanced knowledge inference method for the HOI-HE is able to exceed the benefit of pure data-driven methods. The experimental results in some simulated scenes show that the proposed knowledge inference method can work well in the evaluation of a HOI-HE, as well as to discover some latent risk.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1551-0018
Relation: https://doaj.org/toc/1551-0018
DOI: 10.3934/mbe.2023175?viewType=HTML
DOI: 10.3934/mbe.2023175
URL الوصول: https://doaj.org/article/0e2b010a742b4b8f8b4bd44727784643
رقم الانضمام: edsdoj.0e2b010a742b4b8f8b4bd44727784643
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:15510018
DOI:10.3934/mbe.2023175?viewType=HTML