Academic Journal

Pansharpening Based on Convolution Sparse Representation and NSCT

التفاصيل البيبلوغرافية
العنوان: Pansharpening Based on Convolution Sparse Representation and NSCT
المؤلفون: Yuting LIU, Fan LIU
المصدر: Taiyuan Ligong Daxue xuebao, Vol 53, Iss 4, Pp 713-720 (2022)
بيانات النشر: Editorial Office of Journal of Taiyuan University of Technology, 2022.
سنة النشر: 2022
المجموعة: LCC:Chemical engineering
LCC:Materials of engineering and construction. Mechanics of materials
LCC:Technology
مصطلحات موضوعية: non-subsampled contourlet transform, remote sensing image, convolution sparse representation, fusion rules, Chemical engineering, TP155-156, Materials of engineering and construction. Mechanics of materials, TA401-492, Technology
الوصف: In order to make full use of the spatial detail information of remote sensing images, a remote sensing image fusion method based on convolution sparse representation and non-subsampled contourlet transform (NSCT) was proposed. First, the convolution sparse representation is used to establish a model to complete the super-resolution of image and achieve the purpose of detail enhancement. Then, the two images are fused, and the super-resolution image and panchromatic image are subjected to NSCT transformation to obtain their respective high-resolution sub-band images and low-resolution sub-band images. Appropriate methods are adopted according to the characteristics of different sub-bands. The new sub-band information is obtained by the fusion rules, and finally the NSCT inverse transform is performed to obtain fusion result. Experiments proved that the fusion image obtained by this method is superior to these of other methods in both visual effects and objective indicators.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
Chinese
تدمد: 1007-9432
Relation: https://tyutjournal.tyut.edu.cn/englishpaper/show-1905.html; https://doaj.org/toc/1007-9432
DOI: 10.16355/j.cnki.issn1007-9432tyut.2022.04.016
URL الوصول: https://doaj.org/article/0a46071707b6412ab737fb6b5d59b4b3
رقم الانضمام: edsdoj.0a46071707b6412ab737fb6b5d59b4b3
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:10079432
DOI:10.16355/j.cnki.issn1007-9432tyut.2022.04.016