Academic Journal

PMU abnormal data identification algorithm based on stream clustering

التفاصيل البيبلوغرافية
العنوان: PMU abnormal data identification algorithm based on stream clustering
المؤلفون: DENG Xiaoyu, WANG Xiangbing, CAO Huazhen, WANG Liuhuo, YAN Hongfeng, WANG Hongyu
المصدر: 电力工程技术, Vol 42, Iss 4, Pp 167-174 (2023)
بيانات النشر: Editorial Department of Electric Power Engineering Technology, 2023.
سنة النشر: 2023
مصطلحات موضوعية: phasor measurement unit (pmu), abnormal data, event data, identification framework, information entropy, stream clustering, Applications of electric power, TK4001-4102
الوصف: In order to ensure the accurate application of the data collected by the phasor measurement unit (PMU), it is necessary to eliminate the abnormal data in its measured values. The existing PMU abnormal data identification algorithm has the disadvantages of high algorithm complexity, difficulty in online updating, difficulty in the calibration of multi-source data, and difficulty in application relying on multi-source data. In this paper, an abnormal data identification framework is proposed based on the PMU event data and abnormal data model and the definition of PMU abnormal data identification information entropy. On the basis of the framework, a PMU abnormal data identification algorithm is proposed based on the balanced iterative reducing and clustering using hierarchies (BIRCH) algorithm. The proposed algorithm is implemented, and an algorithm experiment is carried out for the PMU dataset of a substation. The experimental results show that the proposed algorithm has better accuracy and real-time performance than one-class support vector machine (OCSVM) algorithm and gap statistic algorithm.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: Chinese
تدمد: 2096-3203
Relation: https://www.epet-info.com/dlgcjsen/article/abstract/220914312; https://doaj.org/toc/2096-3203
DOI: 10.12158/j.2096-3203.2023.04.018
URL الوصول: https://doaj.org/article/09c45965f7a34f22af624c9f628b56be
رقم الانضمام: edsdoj.09c45965f7a34f22af624c9f628b56be
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20963203
DOI:10.12158/j.2096-3203.2023.04.018