Academic Journal

Anomaly detection for maritime navigation based on probability density function of error of reconstruction

التفاصيل البيبلوغرافية
العنوان: Anomaly detection for maritime navigation based on probability density function of error of reconstruction
المؤلفون: Sadeghi Zahra, Matwin Stan
المصدر: Journal of Intelligent Systems, Vol 32, Iss 1, Pp 1-26 (2023)
بيانات النشر: De Gruyter, 2023.
سنة النشر: 2023
المجموعة: LCC:Science
LCC:Electronic computers. Computer science
مصطلحات موضوعية: anomaly detection, time series trajectories, deep learning, autoencoder, probability density function, Science, Electronic computers. Computer science, QA75.5-76.95
الوصف: Anomaly detection is a fundamental problem in data science and is one of the highly studied topics in machine learning. This problem has been addressed in different contexts and domains. This article investigates anomalous data within time series data in the maritime sector. Since there is no annotated dataset for this purpose, in this study, we apply an unsupervised approach. Our method benefits from the unsupervised learning feature of autoencoders. We utilize the reconstruction error as a signal for anomaly detection. For this purpose, we estimate the probability density function of the reconstruction error and find different levels of abnormality based on statistical attributes of the density of error. Our results demonstrate the effectiveness of this approach for localizing irregular patterns in the trajectory of vessel movements.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2191-026X
Relation: https://doaj.org/toc/2191-026X
DOI: 10.1515/jisys-2022-0270
URL الوصول: https://doaj.org/article/09851cce627f47e2a14982d9713a0d5b
رقم الانضمام: edsdoj.09851cce627f47e2a14982d9713a0d5b
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:2191026X
DOI:10.1515/jisys-2022-0270