Academic Journal

Improving the Accuracy for Analyzing Heart Diseases Prediction Based on the Ensemble Method

التفاصيل البيبلوغرافية
العنوان: Improving the Accuracy for Analyzing Heart Diseases Prediction Based on the Ensemble Method
المؤلفون: Xiao-Yan Gao, Abdelmegeid Amin Ali, Hassan Shaban Hassan, Eman M. Anwar
المصدر: Complexity, Vol 2021 (2021)
بيانات النشر: Wiley, 2021.
سنة النشر: 2021
المجموعة: LCC:Electronic computers. Computer science
مصطلحات موضوعية: Electronic computers. Computer science, QA75.5-76.95
الوصف: Heart disease is the deadliest disease and one of leading causes of death worldwide. Machine learning is playing an essential role in the medical side. In this paper, ensemble learning methods are used to enhance the performance of predicting heart disease. Two features of extraction methods: linear discriminant analysis (LDA) and principal component analysis (PCA), are used to select essential features from the dataset. The comparison between machine learning algorithms and ensemble learning methods is applied to selected features. The different methods are used to evaluate models: accuracy, recall, precision, F-measure, and ROC.The results show the bagging ensemble learning method with decision tree has achieved the best performance.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1076-2787
1099-0526
Relation: https://doaj.org/toc/1076-2787; https://doaj.org/toc/1099-0526
DOI: 10.1155/2021/6663455
URL الوصول: https://doaj.org/article/07d0a0ff9ebc4a64b43ec3b1fb22e3e1
رقم الانضمام: edsdoj.07d0a0ff9ebc4a64b43ec3b1fb22e3e1
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:10762787
10990526
DOI:10.1155/2021/6663455