التفاصيل البيبلوغرافية
العنوان: |
Sharp Bounds on (Generalized) Distance Energy of Graphs |
المؤلفون: |
Abdollah Alhevaz, Maryam Baghipur, Kinkar Ch. Das, Yilun Shang |
المصدر: |
Mathematics, Vol 8, Iss 3, p 426 (2020) |
بيانات النشر: |
MDPI AG, 2020. |
سنة النشر: |
2020 |
المجموعة: |
LCC:Mathematics |
مصطلحات موضوعية: |
distance energy, distance (signless) laplacian energy, generalized distance energy, transmission regular graph, Mathematics, QA1-939 |
الوصف: |
Given a simple connected graph G, let D ( G ) be the distance matrix, D L ( G ) be the distance Laplacian matrix, D Q ( G ) be the distance signless Laplacian matrix, and T r ( G ) be the vertex transmission diagonal matrix of G. We introduce the generalized distance matrix D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where α ∈ [ 0 , 1 ] . Noting that D 0 ( G ) = D ( G ) , 2 D 1 2 ( G ) = D Q ( G ) , D 1 ( G ) = T r ( G ) and D α ( G ) − D β ( G ) = ( α − β ) D L ( G ) , we reveal that a generalized distance matrix ideally bridges the spectral theories of the three constituent matrices. In this paper, we obtain some sharp upper and lower bounds for the generalized distance energy of a graph G involving different graph invariants. As an application of our results, we will be able to improve some of the recently given bounds in the literature for distance energy and distance signless Laplacian energy of graphs. The extremal graphs of the corresponding bounds are also characterized. |
نوع الوثيقة: |
article |
وصف الملف: |
electronic resource |
اللغة: |
English |
تدمد: |
2227-7390 |
Relation: |
https://www.mdpi.com/2227-7390/8/3/426; https://doaj.org/toc/2227-7390 |
DOI: |
10.3390/math8030426 |
URL الوصول: |
https://doaj.org/article/a04664df843a4d7dbb278054e2e2ad69 |
رقم الانضمام: |
edsdoj.04664df843a4d7dbb278054e2e2ad69 |
قاعدة البيانات: |
Directory of Open Access Journals |