Academic Journal

Snow Depth Retrieval Using Detrended SNR From GNSS-R With Bidirectional GRU

التفاصيل البيبلوغرافية
العنوان: Snow Depth Retrieval Using Detrended SNR From GNSS-R With Bidirectional GRU
المؤلفون: Wei Liu, Zihui Lin, Yuan Hu, Aodong Tian, Xintai Yuan, Jens Wickert
المصدر: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 17, Pp 18235-18246 (2024)
بيانات النشر: IEEE, 2024.
سنة النشر: 2024
المجموعة: LCC:Ocean engineering
LCC:Geophysics. Cosmic physics
مصطلحات موضوعية: Bidirectional gated recurrent units (Bi-GRU), detrended signal-to-noise ratio (dSNR), gated recurrent unit (GRU) neural network, global navigation satellite system reflectometry (GNSS-R), snow depth, signal-to-noise ratio (SNR), Ocean engineering, TC1501-1800, Geophysics. Cosmic physics, QC801-809
الوصف: Snow depth monitoring is crucial for hydrology, climate research, and avalanche prediction. While traditional global navigation satellite system (GNSS) reflectometer methods offer cost-effective snow thickness retrieval, they suffer from poor accuracy and robustness, especially in complex terrains and extreme weather. This study proposes an innovative snow depth retrieval technique employing a time-series recurrent neural network with bidirectional gated recurrent units (Bi-GRUs). Unlike traditional methods using signal-to-noise ratio (SNR) features, our algorithm utilizes the detrended SNR as Bi-GRU input, aiming to enhance accuracy, particularly in low snow depths and complex terrains. SNR observations from GPS L1 carriers at stations P351 and AB33 were analyzed. The Bi-GRU algorithm demonstrated high consistency with true snow depths at station P351 (coefficient of determination: 0.9766), with the root-mean-square error (RMSE) and the mean absolute error (MAE) of 9.1559 and 6.4185 cm, respectively. Compared to traditional methods, the Bi-GRU model improved the RMSE by 30.9% and the MAE by 44.5%. At station AB33, where snow depth variations were significant, accuracy improvements of 65.6% (RMSE: 7.4905 cm) and 63.2% (MAE: 5.6074 cm) were observed. In addition, the Bi-GRU model exhibited greater robustness compared to long short-term memory. These findings highlight the efficacy of the Bi-GRU-based approach, suggesting its superiority and broader applicability.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1939-1404
2151-1535
Relation: https://ieeexplore.ieee.org/document/10697422/; https://doaj.org/toc/1939-1404; https://doaj.org/toc/2151-1535
DOI: 10.1109/JSTARS.2024.3470222
URL الوصول: https://doaj.org/article/00253e5eb2d24badb00473379c9e135a
رقم الانضمام: edsdoj.00253e5eb2d24badb00473379c9e135a
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:19391404
21511535
DOI:10.1109/JSTARS.2024.3470222