الوصف: |
Kluczowym elementem w procesie analizy i rozpoznawania obrazów cyfrowych jest proces przetwarzania wstępnego (preprocessing). Jest to klasyczne podejście, które obejmuje etapy: 1. filtracji - poprawiany jest kontrast obrazów oraz usuwane są zakłócenia z obrazu (np. szum), 2. binaryzacji, 3. segmentacji, 4. rozpoznania. Niestety klasyczne podejście nie zawsze się sprawdza. Niektóre problemy klasyfikacji obrazów cyfrowych wymagają bardziej złożonych metod, np. stosowania transformat, których celem jest wyeliminowanie z obrazu niepotrzebnej informacji i ułatwienie zamiany obrazu wejściowego na wektor cech bądź jego opis formalny. W niniejszym artykule opisany został eksperyment, który miał na celu zilustrowanie zależności pomiędzy redukcją zbędnej informacji w cyfrowym obrazie a efektywnością jego rozpoznania. Obrazy oryginalne we wspomnianym eksperymencie były przetwarzane kilkuetapowo i za każdym razem poddawane procesowi rozpoznawania. Pozwoliło to na zbadanie zależności stopnia wpływu redukcji informacji w obrazie na poprawę procesu rozpoznawania. Kolejne etapy przetwarzania obejmowały transformowanie obrazu na płaszczyznę logarytmiczno-biegunową, binaryzację obrazu, detekcję krawędzi, normalizację kątową, transformowanie obrazu konturu obiektu na płaszczyznę log-Hougha oraz zrzutowanie obrazu na osie płaszczyzny log-Hougha. |