On the directly and subdirectly irreducible many-sorted algebras

التفاصيل البيبلوغرافية
العنوان: On the directly and subdirectly irreducible many-sorted algebras
المؤلفون: Climent-Vidal, J., Soliveres-Tur, J.
المصدر: Demonstratio Mathematica.
مصطلحات موضوعية: many-sorted algebras, support of a many-sorted algebra, directly irreducible many-sorted algebra, subdirectly irreducible many-sorted algebra, algebra, twierdzenie Birkhoffa
الوصف: A theorem of single-sorted universal algebra asserts that every finite algebra can be represented as a product of a finite family of finite directly irreducible algebras. In this article, we show that the many-sorted counterpart of the above theorem is also true, but under the condition of requiring, in the definition of directly reducible many-sorted algebra, that the supports of the factors should be included in the support of the many-sorted algebra. Moreover, we show that the theorem of Birkhoff, according to which every single-sorted algebra is isomorphic to a subdirect product of subdirectly irreducible algebras, is also true in the field of many-sorted algebras.
نوع الوثيقة: Article
اللغة: English
URL الوصول: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-104eb2de-bce9-4ad6-988e-7373416498d9
رقم الانضمام: edsbzt.bwmeta1.element.baztech.104eb2de.bce9.4ad6.988e.7373416498d9
قاعدة البيانات: BazTech