Academic Journal
Littlewood’s algorithm and quaternion matrices
العنوان: | Littlewood’s algorithm and quaternion matrices |
---|---|
المؤلفون: | Dennis I. Merino, Vladimir V. Sergeichuk |
المساهمون: | The Pennsylvania State University CiteSeerX Archives |
المصدر: | http://arxiv.org/pdf/0709.2466v1.pdf. |
سنة النشر: | 1999 |
المجموعة: | CiteSeerX |
الوصف: | A strengthened form of Schur’s triangularization theorem is given for quaternion matrices with real spectrum (for complex matrices it was given by Littlewood). It is used to classify projectors (A 2 = A) and self-annihilating operators (A 2 = 0) on a quaternion unitary space and examples of unitarily wild systems of operators on such a space are presented. Littlewood’s algorithm for reducing a complex matrix to a canonical form under unitary similarity is extended to quaternion matrices whose eigenvalues have geometric multiplicity 1. This is the authors ’ version of a work that was published in Linear Algebra Appl. 298 |
نوع الوثيقة: | text |
وصف الملف: | application/pdf |
اللغة: | English |
Relation: | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.244.8466; http://arxiv.org/pdf/0709.2466v1.pdf |
الاتاحة: | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.244.8466 http://arxiv.org/pdf/0709.2466v1.pdf |
Rights: | Metadata may be used without restrictions as long as the oai identifier remains attached to it. |
رقم الانضمام: | edsbas.FF3B0B1E |
قاعدة البيانات: | BASE |
الوصف غير متاح. |