Academic Journal

Littlewood’s algorithm and quaternion matrices

التفاصيل البيبلوغرافية
العنوان: Littlewood’s algorithm and quaternion matrices
المؤلفون: Dennis I. Merino, Vladimir V. Sergeichuk
المساهمون: The Pennsylvania State University CiteSeerX Archives
المصدر: http://arxiv.org/pdf/0709.2466v1.pdf.
سنة النشر: 1999
المجموعة: CiteSeerX
الوصف: A strengthened form of Schur’s triangularization theorem is given for quaternion matrices with real spectrum (for complex matrices it was given by Littlewood). It is used to classify projectors (A 2 = A) and self-annihilating operators (A 2 = 0) on a quaternion unitary space and examples of unitarily wild systems of operators on such a space are presented. Littlewood’s algorithm for reducing a complex matrix to a canonical form under unitary similarity is extended to quaternion matrices whose eigenvalues have geometric multiplicity 1. This is the authors ’ version of a work that was published in Linear Algebra Appl. 298
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.244.8466; http://arxiv.org/pdf/0709.2466v1.pdf
الاتاحة: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.244.8466
http://arxiv.org/pdf/0709.2466v1.pdf
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
رقم الانضمام: edsbas.FF3B0B1E
قاعدة البيانات: BASE