Academic Journal

PECJ: Stream Window Join on Disorder Data Streams with Proactive Error Compensation

التفاصيل البيبلوغرافية
العنوان: PECJ: Stream Window Join on Disorder Data Streams with Proactive Error Compensation
المؤلفون: Zeng, Xianzhi, Zhang, Shuhao, Zhong, Hongbin, Zhang, Hao, Lu, Mian, Zheng, Zhao, Chen, Yuqiang
المساهمون: Nanyang Technological University, Ministry of Education - Singapore
المصدر: Proceedings of the ACM on Management of Data ; volume 2, issue 1, page 1-24 ; ISSN 2836-6573
بيانات النشر: Association for Computing Machinery (ACM)
سنة النشر: 2024
الوصف: Stream Window Join (SWJ), a vital operation in stream analytics, struggles with achieving a balance between accuracy and latency due to out-of-order data arrivals. Existing methods predominantly rely on adaptive buffering, but often fall short in performance, thereby constraining practical applications. We introduce PECJ, a solution that proactively incorporates unobserved data to enhance accuracy while reducing latency, thus requiring robust predictive modeling of stream oscillation. At the heart of PECJ lies a mathematical formulation of the posterior distribution approximation (PDA) problem using variational inference (VI). This approach circumvents error propagation while meeting the low-latency demands of SWJ. We detail the implementation of PECJ, striking a balance between complexity and generality, and discuss both analytical and learning-based approaches. Experimental evaluations reveal PECJ's superior performance. The successful integration of PECJ into a multi-threaded SWJ benchmark testbed further establishes its practical value, demonstrating promising advancements in enhancing data stream processing capabilities amidst out-of-order data.
نوع الوثيقة: article in journal/newspaper
اللغة: English
DOI: 10.1145/3639268
الاتاحة: http://dx.doi.org/10.1145/3639268
https://dl.acm.org/doi/pdf/10.1145/3639268
رقم الانضمام: edsbas.FB85703D
قاعدة البيانات: BASE