Academic Journal

Machine Learning Algorithms as a Computer-Assisted Decision Tool for Oral Cancer Prognosis and Management Decisions: A Systematic Review.

التفاصيل البيبلوغرافية
العنوان: Machine Learning Algorithms as a Computer-Assisted Decision Tool for Oral Cancer Prognosis and Management Decisions: A Systematic Review.
المؤلفون: Chiesa-Estomba, Carlos M, Graña, Manuel, Medela, Alfonso, Sistiaga-Suarez, Jon A, Lechien, Jérome, Calvo-Henriquez, Christian, Mayo-Yanez, Miguel, Vaira, Luigi Angelo, Grammatica, Alberto, Cammaroto, Giovanni, Ayad, Tareck, Fagan, Johannes J
المساهمون: P362 - Métrologie et Sciences du langage, R350 - Institut de recherche en sciences et technologies du langage, R550 - Institut des Sciences et Technologies de la Santé
المصدر: ORL, 84 (4), 278 - 288 (2022)
بيانات النشر: S. Karger AG
سنة النشر: 2022
مصطلحات موضوعية: Cancer, Machine learning, Management, Oral cavity, Prognosis, Algorithms, Artificial Intelligence, Humans, Squamous Cell Carcinoma of Head and Neck/therapy, Carcinoma, Squamous Cell/therapy, Head and Neck Neoplasms/diagnosis, Head and Neck Neoplasms/therapy, Mouth Neoplasms/diagnosis, Mouth Neoplasms/therapy, Otorhinolaryngology, Human health sciences, Otolaryngology, Sciences de la santé humaine, Oto-rhino-laryngologie
الوصف: peer reviewed ; [en] INTRODUCTION: Despite multiple prognostic indicators described for oral cavity squamous cell carcinoma (OCSCC), its management still continues to be a matter of debate. Machine learning is a subset of artificial intelligence that enables computers to learn from historical data, gather insights, and make predictions about new data using the model learned. Therefore, it can be a potential tool in the field of head and neck cancer. METHODS: We conducted a systematic review. RESULTS: A total of 81 manuscripts were revised, and 46 studies met the inclusion criteria. Of these, 38 were excluded for the following reasons: use of a classical statistical method (N = 16), nonspecific for OCSCC (N = 15), and not being related to OCSCC survival (N = 7). In total, 8 studies were included in the final analysis. CONCLUSIONS: ML has the potential to significantly advance research in the field of OCSCC. Advantages are related to the use and training of ML models because of their capability to continue training continuously when more data become available. Future ML research will allow us to improve and democratize the application of algorithms to improve the prediction of cancer prognosis and its management worldwide.
نوع الوثيقة: article in journal/newspaper
اللغة: English
تدمد: 0301-1569
1423-0275
Relation: https://www.karger.com/Article/Pdf/520672; urn:issn:0301-1569; urn:issn:1423-0275; https://orbi.umons.ac.be/handle/20.500.12907/45330; info:hdl:20.500.12907/45330; https://orbi.umons.ac.be/bitstream/20.500.12907/45330/1/10.1159000520672.pdf; info:pmid:35021182
DOI: 10.1159/000520672
الاتاحة: https://orbi.umons.ac.be/handle/20.500.12907/45330
https://hdl.handle.net/20.500.12907/45330
https://orbi.umons.ac.be/bitstream/20.500.12907/45330/1/10.1159000520672.pdf
https://doi.org/10.1159/000520672
Rights: open access ; http://purl.org/coar/access_right/c_abf2 ; info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.F9225FC9
قاعدة البيانات: BASE
الوصف
تدمد:03011569
14230275
DOI:10.1159/000520672