Optimizing human learning using reinforcement learning ; Optimiser l'apprentissage humain avec de l'apprentissage par renforcement

التفاصيل البيبلوغرافية
العنوان: Optimizing human learning using reinforcement learning ; Optimiser l'apprentissage humain avec de l'apprentissage par renforcement
المؤلفون: Girard, Samuel, Vie, Jill-Jênn, Tort, Françoise, Bouzeghoub, Amel
المساهمون: Méthodes computationnelles et mathématiques pour comprendre la société et la santé à partir de données (SODA), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), PIX, Institut Polytechnique de Paris (IP Paris), Département Informatique (TSP - INF), Institut Mines-Télécom Paris (IMT)-Télécom SudParis (TSP), Architecture, Cloud continuum, formal Models, artificial intElligence and Services in distributed computing (ACMES-SAMOVAR), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom Paris (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom Paris (IMT)-Télécom SudParis (TSP)
المصدر: Educational Data Mining 2024 ; https://hal.science/hal-04637464 ; Educational Data Mining 2024, Jul 2024, Atlanta (USA), United States
بيانات النشر: HAL CCSD
سنة النشر: 2024
مصطلحات موضوعية: Reinforcement Learning, Intelligent Tutoring Systems, Partially Observable Markov Decision Processes, Knowledge Tracing, [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI], [INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
جغرافية الموضوع: Atlanta (USA), United States
الوصف: International audience ; Education is a field greatly impacted by the digital revolution. Online courses and MOOCs give access to education to most parts of the world, and many assessments are made online as they are %it is easier to evaluate. This creates an important collection of learning analytics that can be used to provide and generate personalized content, which is essential to keep learners engaged and increase learning gains. This thesis aims to see how machine learning algorithms can be used to learn better knowledge representations of learners and consequently to recommend learning tasks (exercises or courses) tailored to a student's needs. We are learning instructional policies from student data so that we can understand how students learn and which lessons/exercises in a course strongly impact learning for which students.
نوع الوثيقة: conference object
اللغة: English
Relation: hal-04637464; https://hal.science/hal-04637464; https://hal.science/hal-04637464/document; https://hal.science/hal-04637464/file/Doctoral_consortium-5.pdf
الاتاحة: https://hal.science/hal-04637464
https://hal.science/hal-04637464/document
https://hal.science/hal-04637464/file/Doctoral_consortium-5.pdf
Rights: info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.F8FEF1F8
قاعدة البيانات: BASE