Academic Journal
Olivine-catalyzed glycolaldehyde and sugar synthesis under aqueous conditions: Application to prebiotic chemistry
العنوان: | Olivine-catalyzed glycolaldehyde and sugar synthesis under aqueous conditions: Application to prebiotic chemistry |
---|---|
المؤلفون: | Vinogradoff, Vassilissa, Leyva, Vanessa, Mates-Torres, Eric, Pepino, Raphael, Danger, Grégoire, Rimola, Albert, Cazals, Lauryane, Serra, Coline, Pascal, Robert, Meinert, Cornelia |
المساهمون: | Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de Nice (ICN), Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA), INSU - CNRS, European Project: 804144,A-LIFE |
المصدر: | ISSN: 0012-821X ; Earth and Planetary Science Letters ; https://hal.science/hal-04374955 ; Earth and Planetary Science Letters, 2024, 626, ⟨10.1016/j.epsl.2023.118558⟩. |
بيانات النشر: | HAL CCSD Elsevier |
سنة النشر: | 2024 |
المجموعة: | Aix-Marseille Université: HAL |
مصطلحات موضوعية: | Olivine catalysis Formose reaction Sugars Phyllosilicates Prebiotic chemistry Aqueous alteration, [SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry, [CHIM.ANAL]Chemical Sciences/Analytical chemistry, [CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry |
الوصف: | International audience ; The presence of minerals in the prebiotic environment likely shaped the evolution of organic matter, thereby contributing to the emergence of prebiotic systems. Records of such systems are lacking and the interactions between abiotic organic matter and primary minerals remain poorly understood. Here, we demonstrate the ability of olivine silicates, in simulated early Earth or planetary aqueous environments, to catalyse glycolaldehyde formation from only formaldehyde, and help producing sugars that are essential components for life, through the formose reaction. By combining comprehensive gas chromatography analyses on experimental samples with quantum chemical simulations, we provide a mechanism for an olivine-catalyzed glycolaldehyde formation. Our findings suggest that olivine plays a triple role in the formose chemical network: maintaining an alkaline pH, enabling the initiation step towards the formation of glycoladehyde (which is typically the most challenging step) and promoting the autocatalytic cycle. These results open-up new scenarios on the impact of primary minerals on the evolution of chemical pathways in aqueous environments that were probably essential for the emergence of the first biomolecules. |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | English |
Relation: | info:eu-repo/grantAgreement//804144/EU/ERC Starting Grant A-LIFE/A-LIFE |
DOI: | 10.1016/j.epsl.2023.118558 |
الاتاحة: | https://hal.science/hal-04374955 https://hal.science/hal-04374955v1/document https://hal.science/hal-04374955v1/file/2024_Vinogradoff_EarthPlanetSciLett_olivine%20catalyzed%20formose%20reaction.pdf https://doi.org/10.1016/j.epsl.2023.118558 |
Rights: | info:eu-repo/semantics/OpenAccess |
رقم الانضمام: | edsbas.F7FE07E2 |
قاعدة البيانات: | BASE |
DOI: | 10.1016/j.epsl.2023.118558 |
---|