Academic Journal

The Incidence Hopf Algebra of Graphs

التفاصيل البيبلوغرافية
العنوان: The Incidence Hopf Algebra of Graphs
المؤلفون: Humpert, Brandon Eugene, Martin, Jeremy L.
بيانات النشر: Society for Industrial and Applied Mathematics
سنة النشر: 2012
المجموعة: The University of Kansas: KU ScholarWorks
مصطلحات موضوعية: combinatiorial Hopf algebra, graph, chromatic polynomial, tutte polynomial, acyclic orientation
الوصف: This is the published version, also available here: http://dx.doi.org/10.1137/110820075. ; The graph algebra is a commutative, cocommutative, graded, connected incidence Hopf algebra, whose basis elements correspond to finite graphs, and whose Hopf product and coproduct admit simple combinatorial descriptions. We give a new formula for the antipode in the graph algebra in terms of acyclic orientations; our formula contains many fewer terms than Takeuchi's and Schmitt's more general formulas for the antipode in an incidence Hopf algebra. Applications include several formulas (some old and some new) for evaluations of the Tutte polynomial.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: unknown
Relation: Humpert, Brandon & Martin, Jeremy L. "The Incidence Hopf Algebra of Graphs." (2012) SIAM J. Discrete Math., 26(2), 555–570. (16 pages). http://dx.doi.org/10.1137/110820075.; http://hdl.handle.net/1808/16971
DOI: 10.1137/110820075
الاتاحة: http://hdl.handle.net/1808/16971
https://doi.org/10.1137/110820075
Rights: openAccess
رقم الانضمام: edsbas.F71000BA
قاعدة البيانات: BASE