Knowledge Base Completion for Long-Tail Entities

التفاصيل البيبلوغرافية
العنوان: Knowledge Base Completion for Long-Tail Entities
المؤلفون: Lihu Chen, Simon Razniewski, Gerhard Weikum
بيانات النشر: Zenodo
سنة النشر: 2023
المجموعة: Zenodo
الوصف: We developed a new dataset with an emphasis on the long-tail challenge, called MALT (for “Multi-token, Ambiguous, Long-Tailed facts”). The dataset contains 65.3% triple facts where the O entity is a multi-word phrase, and 58.6% ambiguous facts where the S or O entities share identical alias names in Wikidata. For example, the two ambiguous entities ,“Birmingham, West Midlands (Q2256)” and “Birmingham, Alabama (Q79867)”, have the same Label value “BirminghamBirmingham”. In total, 87.0% of the sample facts have entities in the long tail, where we define long-tail entities to have at most 13 Wikidata triples.
نوع الوثيقة: conference object
اللغة: unknown
Relation: https://doi.org/10.5281/zenodo.8092561; https://doi.org/10.5281/zenodo.8097738; oai:zenodo.org:8097738
DOI: 10.5281/zenodo.8097738
الاتاحة: https://doi.org/10.5281/zenodo.8097738
Rights: info:eu-repo/semantics/openAccess ; Creative Commons Attribution 4.0 International ; https://creativecommons.org/licenses/by/4.0/legalcode
رقم الانضمام: edsbas.F325D9CE
قاعدة البيانات: BASE