Academic Journal

A linear system-free Gaussian RBFmethod for the Gross-Pitaevskii equation on unbounded domains

التفاصيل البيبلوغرافية
العنوان: A linear system-free Gaussian RBFmethod for the Gross-Pitaevskii equation on unbounded domains
المؤلفون: Scott A. Sarra
المساهمون: The Pennsylvania State University CiteSeerX Archives
المصدر: http://scottsarra.org/math/papers/sarraLSFG.pdf.
سنة النشر: 2012
المجموعة: CiteSeerX
مصطلحات موضوعية: RBF interpolation, RBF collocation for PDEs, Numerical PDEs, Bose-Einstein Condensates
الوصف: Gaussian Radial Basis Function (RBF) interpolation methods are theoretically spectrally accurate. However, in applications this accu-racy is seldom realized due to the necessity of solving a very poorly conditioned linear system in order to evaluate the methods. Recently, by using approximate cardinal functions and restricting the method to a uniformly spaced grid (or a smooth mapping thereof), it has been shown that the Gaussian RBF method can be formulated in a matrix free framework that does not involve solving a linear system [1]. In this work we differentiate the linear system-free Gaussian (LSFG) method and use it to solve Partial Differential Equations on unbounded do-mains that have solutions that decay rapidly and that are negligible at the ends of the grid. As an application, we use the LSFG collocation method to numerically simulate Bose-Einstein Condensates.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.668.8494; http://scottsarra.org/math/papers/sarraLSFG.pdf
الاتاحة: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.668.8494
http://scottsarra.org/math/papers/sarraLSFG.pdf
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
رقم الانضمام: edsbas.F2BAA955
قاعدة البيانات: BASE