Academic Journal

Maximally smooth cubic spline quasi-interpolants on arbitrary triangulations

التفاصيل البيبلوغرافية
العنوان: Maximally smooth cubic spline quasi-interpolants on arbitrary triangulations
المؤلفون: Marsala M., Manni C., Speleers H.
المساهمون: Marsala, M, Manni, C, Speleers, H
بيانات النشر: Elsevier
سنة النشر: 2024
المجموعة: Universitá degli Studi di Roma "Tor Vergata": ART - Archivio Istituzionale della Ricerca
مصطلحات موضوعية: Quasi-interpolation, C2 cubic spline, Simplex spline, Triangulation, Wang-Shi macro-structure, Settore MAT/08
الوصف: We investigate the construction of C2 cubic spline quasi-interpolants on a given arbitrary triangulation T to approximate a sufficiently smooth function f. The proposed quasi-interpolants are locally represented in terms of a simplex spline basis defined on the cubic Wang-Shi refinement of the triangulation. This basis behaves like a B-spline basis within each triangle of T and like a Bernstein basis for imposing smoothness across the edges of T. Any element of the cubic Wang-Shi spline space can be uniquely identified by considering a local Hermite interpolation problem on every triangle of T. Different C2 cubic spline quasi-interpolants are then obtained by feeding different sets of Hermite data to this Hermite interpolation problem, possibly reconstructed via local polynomial approximation. All the proposed quasi-interpolants reproduce cubic polynomials and their performance is illustrated with various numerical examples.
نوع الوثيقة: article in journal/newspaper
اللغة: English
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:001250199400001; volume:112; numberofpages:22; journal:COMPUTER AIDED GEOMETRIC DESIGN; https://hdl.handle.net/2108/378443; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85194886917
DOI: 10.1016/j.cagd.2024.102348
الاتاحة: https://hdl.handle.net/2108/378443
https://doi.org/10.1016/j.cagd.2024.102348
رقم الانضمام: edsbas.F253FB87
قاعدة البيانات: BASE