Academic Journal
Maximally smooth cubic spline quasi-interpolants on arbitrary triangulations
العنوان: | Maximally smooth cubic spline quasi-interpolants on arbitrary triangulations |
---|---|
المؤلفون: | Marsala M., Manni C., Speleers H. |
المساهمون: | Marsala, M, Manni, C, Speleers, H |
بيانات النشر: | Elsevier |
سنة النشر: | 2024 |
المجموعة: | Universitá degli Studi di Roma "Tor Vergata": ART - Archivio Istituzionale della Ricerca |
مصطلحات موضوعية: | Quasi-interpolation, C2 cubic spline, Simplex spline, Triangulation, Wang-Shi macro-structure, Settore MAT/08 |
الوصف: | We investigate the construction of C2 cubic spline quasi-interpolants on a given arbitrary triangulation T to approximate a sufficiently smooth function f. The proposed quasi-interpolants are locally represented in terms of a simplex spline basis defined on the cubic Wang-Shi refinement of the triangulation. This basis behaves like a B-spline basis within each triangle of T and like a Bernstein basis for imposing smoothness across the edges of T. Any element of the cubic Wang-Shi spline space can be uniquely identified by considering a local Hermite interpolation problem on every triangle of T. Different C2 cubic spline quasi-interpolants are then obtained by feeding different sets of Hermite data to this Hermite interpolation problem, possibly reconstructed via local polynomial approximation. All the proposed quasi-interpolants reproduce cubic polynomials and their performance is illustrated with various numerical examples. |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | English |
Relation: | info:eu-repo/semantics/altIdentifier/wos/WOS:001250199400001; volume:112; numberofpages:22; journal:COMPUTER AIDED GEOMETRIC DESIGN; https://hdl.handle.net/2108/378443; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85194886917 |
DOI: | 10.1016/j.cagd.2024.102348 |
الاتاحة: | https://hdl.handle.net/2108/378443 https://doi.org/10.1016/j.cagd.2024.102348 |
رقم الانضمام: | edsbas.F253FB87 |
قاعدة البيانات: | BASE |
DOI: | 10.1016/j.cagd.2024.102348 |
---|