Academic Journal

Effects of microwave and conventional heating on the oxidative stability of corn oil enriched with different antioxidants ; Efectos del calentamiento mediante horno microondas y convencional sobre la estabilidad oxidativa del aceite de maíz enriquecido con diferentes antioxidantes

التفاصيل البيبلوغرافية
العنوان: Effects of microwave and conventional heating on the oxidative stability of corn oil enriched with different antioxidants ; Efectos del calentamiento mediante horno microondas y convencional sobre la estabilidad oxidativa del aceite de maíz enriquecido con diferentes antioxidantes
المؤلفون: Baştürk, A.
المصدر: Grasas y Aceites; Vol. 70 No. 4 (2019); e326 ; Grasas y Aceites; Vol. 70 Núm. 4 (2019); e326 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2019.v70.i4
بيانات النشر: Consejo Superior de Investigaciones Científicas
سنة النشر: 2019
المجموعة: Grasas y Aceites (E-Journal)
مصطلحات موضوعية: Ascorbyl Palmitate, Corn Oil, Hexanal, Kinetics, Microwave, Oxidation, Aceite de maíz, Cinética, Microonda, Oxidación palmitato de ascorbilo
الوصف: Four different corn oil samples including stripped (SCO, Control), refined (RCO), stripped corn oil enriched with rosemary extract (SCO+ROS) and ascorbyl palmitate (SCO+AP) were exposed to microwave (MWH) and conventional heating (CVH). For both heating methods, peroxide value (PV) and conjugated dienes increased at up to 230 °C, at which temperature hexanal (HEX) and conjugated trienes started to increase instead. Kinetic analysis revealed that PV and HEX formation were first ordered and the reaction rate among the samples was as follows: Control > SCO+ROS > RCO > SCO + AP for PV and SCO + ROS > RCO > SCO+AP > Control for HEX. The unsaturated fatty acid contents of CVH and MWH treated samples showed 9.5 and 12.9% reduction in SCO, while they were 2.9 and 7.7% in RCO, 3.6 and 6.1% in SCO + ROS, and finally 4.0 and 4.8% in SCO + AP. It was concluded that MWH led to a more severe deterioration and that the antioxidant activity of ROS was superior to that of AP for both heating methods. ; Cuatro muestras diferentes de aceites de maíz que incluyen aceites de maíz crudo (SCO, Control), refinados (RCO) y crudo enriquecido con extracto de romero (SCO + ROS) y palmitato de ascorbilo (SCO + AP) se expusieron a microondas (MWH) y calentamiento convencional (CVH). Para ambos métodos de calentamiento, el índice de peróxido (PV) y los dienos conjugados aumentaron hasta 230 °C, a partir de donde hexanal (HEX) y trienos conjugados comenzaron a aumentar. El análisis cinético reveló que la formación de PV y HEX es de primer orden y la velocidad de reacción entre las muestras fue la siguiente: Control > SCO + ROS >RCO > SCO+AP para PV y SCO + ROS > RCO > SCO + AP>Control para HEX. El contenido de ácidos grasos insaturados de las muestras tratadas con CVH y MWH mostró una reducción de 9,5 y 12,9% en SCO, mientras que fueron de 2,9 y 7,7% en RCO, 3,6 y 6,1% en SCO + ROS, y finalmente 4,0 y 4,8% en SCO + AP, respectivamente. Se concluye que el MWH condujo a un deterioro más severo y la actividad ...
نوع الوثيقة: article in journal/newspaper
وصف الملف: text/html; application/pdf; application/xml
اللغة: English
Relation: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1792/2494; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1792/2495; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1792/2496; Adhvaryu A, Erhan SZ, Liu ZS, Perez JM. 2000. Oxidation kinetic studies of oils derived from unmodified and genetically modified vegetables using pressurized differential scanning calorimetry and nuclear magnetic resonance spectroscopy. Thermochim. Acta 364, 87-97. https://doi.org/10.1016/S0040-6031(00)00626-2; Albi T, Lanzón A, Guinda A, Pérez-Camino MC, León M. 1997. Microwave and conventional heating effects on some physical and chemical parameters of edible fats. J. Agric. Food Chem. 45, 3000-3003. https://doi.org/10.1021/jf970168c; AOAC 1990. Official Methods of Analysis, Fifteenth edition. Association of Official Analysis Chemists, Washington, DC.; AOCS 1989. In Official methods and recommended practices of the American Oil Chemists' Society (4th ed.), AOCS Champaign, IL, USA.; AOCS 2003. Official Method Ce 8-89. Determination of tocopherols and tocotrienols in vegetable oils and fats by HPLC. In Official methods and recommended practices of the American Oil Chemists' Society (4th ed.), AOCS, Champaign, IL, USA.; Basturk A, Javidipour I, Boyaci IH. 2007. Oxidative stability of natural and chemically interesterified cottonseed, palm and soybean oils. J. Food Lipids 14,170-188. https://doi.org/10.1111/j.1745-4522.2007.00078.x; Ba?türk A, Ceylan MM, Çavu? M, Boran G, Javidipour I. 2018. Effects of some herbal extracts on oxidative stability of corn oil under accelerated oxidation conditions in comparison with some commonly used antioxidants. LWT-Food Sci. Technol. 89, 358-64. https://doi.org/10.1016/j.lwt.2017.11.005; Benedini L, Schulz EP, Messina PV, Palma SD, Allemandi DA, Schulz PC. 2011. The ascorbyl palmitate-water system: Phase diagram and state of water. Colloid Surface A 375, 178-185. https://doi.org/10.1016/j.colsurfa.2010.11.083; Caponio F, Pasqualone A, Gomes T. 2003. Changes in the fatty acid composition of vegetable oils in model doughs submitted to conventional or microwave heating. Int. J. Food Sci. Tech. 38, 481-486. https://doi.org/10.1046/j.1365-2621.2003.00703.x; Chen XQ, Zhang Y, Zu YG, Yang L, Lu Q, Wang W. 2014. Antioxidant effects of rosemary extracts on sunflower oil compared with synthetic antioxidants. Int. J. Food Sci. Tech. 49, 385-91. https://doi.org/10.1111/ijfs.12311; Chu YH, Hsu HF. 1999. Effects of antioxidants on peanut oil stability. Food Chem. 66, 29-34. https://doi.org/10.1016/S0308-8146(98)00082-X; Crapiste GH, Brevedan MI, Carelli AA. 1999. Oxidation of sunflower oil during storage. J. Am. Oil Chem. Soc. 76, 1437. https://doi.org/10.1007/s11746-999-0181-5; Frankel EN. 2010. Chemistry of extra virgin olive oil: adulteration, oxidative stability, and antioxidants. J. Agric. Food Chem. 58, 5991-6006. https://doi.org/10.1021/jf1007677 PMid:20433198; Göksunger Y. 2011.Reaction and Fermentation Kinetics in Food Engineering, Sidas Medya Ltd. ?ti. Publisher: ?zmir, Turkey.; Hamilton RJ, Kalu C, Prisk E, Padley F, Pierce H. 1997. Chemistry of free radicals in lipids. Food Chem. 60, 193-9. https://doi.org/10.1016/S0308-8146(96)00351-2; Hassanein MM, El-Shami SM, El-Mallah MH. 2003. Changes occurring in vegetable oils composition due to microwave heating. Grasas Aceites 54, 343-349. https://doi.org/10.3989/gya.2003.v54.i4.219; Javidipour I, Erinc H, Basturk A, Tekin A. 2017. Oxidative changes in hazelnut, olive, soybean, and sunflower oils during microwave heating. Int. J. Food Prop. 20, 1582-1592. https://doi.org/10.1080/10942912.2016.1214963; Javidipour I, Qian MC. 2008. Volatile component change in whey protein concentrate during storage investigated by headspace solid-phase microextraction gas chromatography. Dairy Sci. Technol. 88, 95-104. https://doi.org/10.1051/dst:2007010; Karel M. 1992. Kinetics of lipid oxidation, Phys Chem foods, New York: Marcel Dekker Inc., pp. 651-68.; Kiralan M, Kiralan SS. 2015. Changes in Volatile Compounds of Black Cumin Oil and Hazelnut Oil by Microwave Heating Process. J. Am. Oil Chem. Soc. 92, 1445-1450. https://doi.org/10.1007/s11746-015-2711-7; Lukesova D, Dostalova J, Mahmoud EEM, Svarovska M. 2009. Oxidation Changes of Vegetable Oils during Microwave Heating. Czech J. Food Sci. 27, S178-S181. https://doi.org/10.17221/929-CJFS; Labuza TP, Dugan Jr L. 1971. Kinetics of lipid oxidation in foods. Crit. Rev. Food Sci. 2,355-405. https://doi.org/10.1080/10408397109527127; Schaich K. 2016. 'Analysis of lipid and protein oxidation in fats, oils, and foods', Oxidative stability and shelf life of foods containing oils and fats, Elsevier, pp. 1-131. https://doi.org/10.1016/B978-1-63067-056-6.00001-X PMid:26948539; Shahidi F. 1998. Indicators for evaluation of lipid oxidation and off-flavor development in food. Dev. Food Sci. 40, 55-68. https://doi.org/10.1016/S0167-4501(98)80032-0; Shahidi F, Wanasundara UN. 1996. Methods for evaluation of the oxidative stability of lipid-containing foods. Food Sci. Technol. Int. 2,73-81. https://doi.org/10.3136/fsti9596t9798.2.73; Shahidi F, Zhong Y. 2005. Antioxidants: regulatory status. Bailey's industrial oil and fat products. 1, 491-512. https://doi.org/10.1002/047167849X.bio035; Tan CP, Man YBC, Jinap S, Yusoff MSA. 2001. Effects of microwave heating on changes in chemical and thermal properties of vegetable oils. J. Am. Oil Chem. Soc. 78,1227-1232. https://doi.org/10.1007/s11745-001-0418-5; Vieira TMFS, Regitano-D'arce MAB. 1998. Stability of oils heated by microwave: UV-spectrophotometric evaluation. Food Sci. Technol. 18, 433-437. https://doi.org/10.1590/S0101-20611998000400015; Yoshida H, Kondo I, Kajimoto G. 1992a. Participation of Free Fatty-Acids in the Oxidation of Purified Soybean Oil during Microwave-Heating. J. Am. Oil Chem. Soc. 69,1136-40. https://doi.org/10.1007/BF02541050; Yoshida H, Tatsumi M, Kajimoto G. 1992b. Influence of Fatty-Acids on the Tocopherol Stability in Vegetable-Oils during Microwave-Heating. J. Am. Oil Chem. Soc. 69, 119-25. https://doi.org/10.1007/BF02540560; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1792
DOI: 10.3989/gya.1044182
الاتاحة: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1792
https://doi.org/10.3989/gya.1044182
Rights: Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC) ; https://creativecommons.org/licenses/by/4.0
رقم الانضمام: edsbas.F224C5F0
قاعدة البيانات: BASE