Fairness in Streaming Submodular Maximization over a Matroid Constraint

التفاصيل البيبلوغرافية
العنوان: Fairness in Streaming Submodular Maximization over a Matroid Constraint
المؤلفون: El Halabi M., Fusco F., Norouzi-Fard A., Tardos J., Tarnawski J.
المساهمون: El Halabi, M., Fusco, F., Norouzi-Fard, A., Tardos, J., Tarnawski, J.
بيانات النشر: ML Research Press
سنة النشر: 2023
المجموعة: Sapienza Università di Roma: CINECA IRIS
مصطلحات موضوعية: submodular maximization, fairness
الوصف: Streaming submodular maximization is a natural model for the task of selecting a representative subset from a large-scale dataset. If datapoints have sensitive attributes such as gender or race, it becomes important to enforce fairness to avoid bias and discrimination. This has spurred significant interest in developing fair machine learning algorithms. Recently, such algorithms have been developed for monotone submodular maximization under a cardinality constraint. In this paper, we study the natural generalization of this problem to a matroid constraint. We give streaming algorithms as well as impossibility results that provide trade-offs between efficiency, quality and fairness. We validate our findings empirically on a range of well-known real-world applications: exemplar-based clustering, movie recommendation, and maximum coverage in social networks.
نوع الوثيقة: conference object
اللغة: English
Relation: ispartofbook:Proceedings of the 40 th International Conference on Machine Learning; International Conference on Machine Learning; volume:202; firstpage:9150; lastpage:9171; numberofpages:22; serie:PROCEEDINGS OF MACHINE LEARNING RESEARCH; https://hdl.handle.net/11573/1693543
الاتاحة: https://hdl.handle.net/11573/1693543
Rights: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.F0DEBBF7
قاعدة البيانات: BASE