Academic Journal

Gender and race classification using geodesic distance measurement

التفاصيل البيبلوغرافية
العنوان: Gender and race classification using geodesic distance measurement
المؤلفون: Marzoog, Zahraa Shahad, Hasan, Ashraf Dhannon, Abbas, Hawraa Hassan
المصدر: Indonesian Journal of Electrical Engineering and Computer Science, 27(2), 820-831, (2022-08-01)
بيانات النشر: Zenodo
سنة النشر: 2022
المجموعة: Zenodo
مصطلحات موضوعية: Ethnicity classification, Face recognition, Gender classification, Geodesic distance, Soft biometric
الوصف: Gender and ethnicity classifications are a long-standing challenge in the face recognition’s field. They are key-demographic traits of individuals and applied in real-world applications such as biometric and demographic research, human-computer interaction (HCI), law enforcement and online advertisements. Thus, many methods have been proposed to address gender or/and race classifications and achieved various accuracies. This research improves race and gender classification by employing a geodesic path algorithm to extract discriminative features of both gender and ethnicity. PCA is also utilized for dimensionality reduction of Gender-feature and race-feature matrices. KNN and SVM are used to classify the extracted feature. This research was tested on the face recognition technology (FERET) dataset, with classification results demonstrating high-level performance (100%) in distinguishing gender and ethnicity.
نوع الوثيقة: article in journal/newspaper
اللغة: English
Relation: oai:zenodo.org:7184169
DOI: 10.11591/ijeecs.v27.i2.pp820-831
الاتاحة: https://doi.org/10.11591/ijeecs.v27.i2.pp820-831
Rights: info:eu-repo/semantics/openAccess ; Creative Commons Attribution 4.0 International ; https://creativecommons.org/licenses/by/4.0/legalcode
رقم الانضمام: edsbas.EF1944BD
قاعدة البيانات: BASE
الوصف
DOI:10.11591/ijeecs.v27.i2.pp820-831