Academic Journal

Bounds for the Generalized Distance Eigenvalues of a Graph

التفاصيل البيبلوغرافية
العنوان: Bounds for the Generalized Distance Eigenvalues of a Graph
المؤلفون: Abdollah Alhevaz, Maryam Baghipur, Hilal Ahmad Ganie, Yilun Shang
المصدر: Symmetry; Volume 11; Issue 12; Pages: 1529
بيانات النشر: Multidisciplinary Digital Publishing Institute
سنة النشر: 2019
المجموعة: MDPI Open Access Publishing
مصطلحات موضوعية: distance matrix (spectrum), distance signlees Laplacian matrix (spectrum), (generalized) distance matrix, spectral radius, transmission regular graph
الوصف: Let G be a simple undirected graph containing n vertices. Assume G is connected. Let D ( G ) be the distance matrix, D L ( G ) be the distance Laplacian, D Q ( G ) be the distance signless Laplacian, and T r ( G ) be the diagonal matrix of the vertex transmissions, respectively. Furthermore, we denote by D α ( G ) the generalized distance matrix, i.e., D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where α ∈ [ 0 , 1 ] . In this paper, we establish some new sharp bounds for the generalized distance spectral radius of G, making use of some graph parameters like the order n, the diameter, the minimum degree, the second minimum degree, the transmission degree, the second transmission degree and the parameter α , improving some bounds recently given in the literature. We also characterize the extremal graphs attaining these bounds. As an special cases of our results, we will be able to cover some of the bounds recently given in the literature for the case of distance matrix and distance signless Laplacian matrix. We also obtain new bounds for the k-th generalized distance eigenvalue.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: Mathematics and Symmetry/Asymmetry; https://dx.doi.org/10.3390/sym11121529
DOI: 10.3390/sym11121529
الاتاحة: https://doi.org/10.3390/sym11121529
Rights: https://creativecommons.org/licenses/by/4.0/
رقم الانضمام: edsbas.EE9E575A
قاعدة البيانات: BASE