Academic Journal

Patient-ventilator Interaction using autoencoder derived magnitude of asynchrony breathing

التفاصيل البيبلوغرافية
العنوان: Patient-ventilator Interaction using autoencoder derived magnitude of asynchrony breathing
المؤلفون: Loo, Nien Loong, Chiew, Yeong Shiong, Ang, Christopher Yew Shuen, Tan, Chee Pin, Nor, Mohd Basri Mat
المساهمون: Ishii, Hideaki, Ebihara, Yoshio, Imura, Jun-ichi, Yamakita, Masaki
المصدر: Loo , N L , Chiew , Y S , Ang , C Y S , Tan , C P & Nor , M B M 2023 , Patient-ventilator Interaction using autoencoder derived magnitude of asynchrony breathing . in H Ishii , Y Ebihara , J Imura & M Yamakita (eds) , IFAC-PapersOnLine . 2 edn , vol. 56 , IFAC-PapersOnLine , no. 2 , vol. 56 , Elsevier BV , Amsterdam Netherlands , pp. 2067-2072 , International Federation of Automatic Control World Congress 2023 , Yokohama , Japan , 9/07/23 . https://doi.org/10.1016/j.ifacol.2023.10.1106
بيانات النشر: Elsevier BV
سنة النشر: 2023
مصطلحات موضوعية: Asynchronous breathing, Asynchrony index, Magnitude of asynchrony
الوصف: The occurrence of asynchronous breathing (AB) is prevalent during mechanical ventilation (MV) treatment. Despite studies being carried out to elucidate the impact of AB on MV patients, the asynchrony index (AI), a metric to describe the patient-ventilator interaction, may not be sufficient to quantify the severity of each AB fully in MV patients. This research investigates the feasibility of using a machine learning-derived metric, the ventilator interaction index (VI), to describe a patient's interaction with a mechanical ventilator. VI is derived using the magnitude of a breath's asynchrony to measure how well a patient is interacting with the ventilator. 1,188 hours of hourly AI and VI for 13 MV patients were computed using a convolution neural network and an autoencoder. Pearson's correlation analysis between patients' AI and VI versus their levels of partial pressure oxygen (PaO2) and partial pressure of carbon dioxide (PaCO2) was carried out. In this patient cohort, the patients' median AI is 38.4% [Interquartile range (IQR): 25.9-48.8], and the median VI is 86.0% [IQR: 76.5-91.7]. Results show that high AI does not necessarily predispose to low VI. This difference suggests that every AB poses a different magnitude of asynchrony that may affect patient's PaO2 and PaCO2. Quantifying hourly VI along with AI during MV could be beneficial in explicating the aetiology of AB.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
ردمك: 978-1-71387-234-4
1-71387-234-X
Relation: urn:ISBN:9781713872344
DOI: 10.1016/j.ifacol.2023.10.1106
الاتاحة: https://research.monash.edu/en/publications/1c3bc1a2-faa7-4946-9d01-7a3fcbca5d1f
https://doi.org/10.1016/j.ifacol.2023.10.1106
https://researchmgt.monash.edu/ws/files/599328848/589912923_oa.pdf
http://www.scopus.com/inward/record.url?scp=85184959344&partnerID=8YFLogxK
Rights: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.EE18FE98
قاعدة البيانات: BASE
الوصف
ردمك:9781713872344
171387234X
DOI:10.1016/j.ifacol.2023.10.1106