Academic Journal

Traveling wave method for analysis of faults in a high voltage transmission line ; Método de las ondas viajeras para el análisis de fallas en una línea de transmisión de alta tensión

التفاصيل البيبلوغرافية
العنوان: Traveling wave method for analysis of faults in a high voltage transmission line ; Método de las ondas viajeras para el análisis de fallas en una línea de transmisión de alta tensión
المؤلفون: Ochoa V., Yonatan F., Penagos B., Cristian F.
المصدر: Tekhnê; Vol. 18 No. 2 (2021): Tekhnê Journal; 13-18 ; Tekhnê; Vol. 18 Núm. 2 (2021): Revista Tekhnê; 13-18 ; 1692-8407
بيانات النشر: Universidad Distrital Francisco José de Caldas
سنة النشر: 2021
المجموعة: Universidad Distrital de la ciudad de Bogotá: Open Journal Systems
مصطلحات موضوعية: ATP-EMTP, Alta tensión, línea de transmisión, localización de fallas, onda viajera, fault location, high voltage, transmission line, traveling wave
الوصف: This paper presents an analysis of the error presented in the location of faults by the traveling wave method, and the traveling wave method analyzing reflected waves. This analysis arises from the results of the simulation of a high voltage transmission line in the ATP-EMTP software that allows us to simulate faults in a very graphical way and gives, as a result, the waveform presented at the measurement points. The results show similar behavior between theoretical behavior and simulation. ; En este artículo se presenta un análisis sobre el error presentado en la ubicación de fallas por el método de ondas viajeras, y el método de ondas viajeras analizando ondas reflejadas. Este análisis surge de los resultados de la simulación de una línea de transmisión en alta tensión en el software ATP-EMTP que nos permite simular fallas de una forma bastante gráfica, y da como resultado la forma de onda presentada en los puntos de medición. Los resultados muestran comportamientos similares entre comportamiento teórico y simulación.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
Relation: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260/18119; Abubakar, U., Mekhilef, S., Gaeid, K. S., Mokhlis, H., & Mashhadany, Y. I. A. (2020). Induction motor fault detection based on multi-sensory control and wavelet analysis. IET Electric Power Applications, 14(11), 2051–2061. https://doi.org/10.1049/iet -epa.2020.0030; Adly, A. R., Aleem, S. H. E. A., Algabalawy, M. A., Jurado, F., & Ali, Z. M. (2020). A novel protection scheme for multi-terminal transmission lines based on wavelet transform. Electric Power Systems Research, 183(1), 106286. https://doi.org/10.1016/j.epsr.2020.106286; Afrasiabi, S., Afrasiabi, M., Mohammadi, M., & Parang, B. (2020). Fault localisation and diagnosis in transmission networks based on robust deep gabor convolutional neural network and PMU measurements. IET Generation, Transmission & Distribution, 14(26), 6484–6492. https://doi.org/10.1049/iet-gtd.2020.0856; Barman, J., & Hazarika, D. (2020). Linear and quadratic time–frequency analysis of vibration for fault detection and identification of NFR trains. IEEE Transactions on Instrumentation and Measurement, 69(11), 8902–8909. https://doi.org/10.1109/TIM.2020.2998888; Cherif, H., Benakcha, A., Laib, I., Chehaidia, S. E., Menacer, A., Soudan, B., & Olabi, A. (2020). Early detection and localization of stator inter-turn faults based on discrete wavelet energy ratio and neural networks in induction motor. Energy, 212(1), 118684. https://doi.org/10.1016/j.energy.2020.118684; Gafoor, S. A., & Rao, P. V. R. Wavelet based fault detection, classification and location in transmission lines. In: 2006 IEEE international power and energy conference. 2006, 1–6. https://doi.org/10.1109/PECON.2006.346630.; Huang, J., Gao, H., Zhao, L., & Feng, Y. (2020). Instantaneous active power integral differential protection for hybrid AC/DC transmission systems based on fault variation component. IEEE Transactions on Power Delivery, 35(6), 2791–2799. https://doi.org/10.1109/TPWRD.2020.3011459; Li, X., Wu, S., Li, X., Yuan, H., & Zhao, D. (2020). Particle swarm optimization-support vector machine model for machinery fault diagnoses in high-voltage circuit breakers. Chinese Journal of Mechanical Engineering, 33(1), 6. https://doi.org/10.1186/s10033-019-0428-5; Rafique, F., Fu, L., & Mai, R. (2021). End to end machine learning for fault detection and classification in power transmission lines. Electric Power Systems Research, 199(1), 107430. https://doi.org/10.1016/j.epsr.2021.107430; Ren, H., Hou, Z. J., Vyakaranam, B., Wang, H., & Etingov, P. (2020). Power system event classification and localization using a convolutional neural network. Frontiers in Energy Research, 8(1), 607826. https://doi.org/10.3389/fenrg.2020.607826; Rivas, A. E. L., & Abrão, T. (2020). Faults in smart grid systems: Monitoring, detection and classification. Electric Power Systems Research, 189, 106602. https://doi.org/10.1016/j.epsr.2020.106602; Saber, A., Zeineldin, H., El-Fouly, T., & Al-Durra, A. (2020). Current differential relay characteristic for bipolar HVDC transmission line fault detection. IET Generation, Transmission & Distribution, 14(23), 5505–5513. https://doi.org/10.1049/iet-gtd.2020.0556; Torres, V., Guillen, D., Olveres, J., Escalante, B., & Rodriguez, J. (2020). Modelling of high impedance faults in distribution systems and validation based on multiresolution techniques. Computers & Electrical Engineering, 83(1), 106576. https://doi.org/10.1016/j.compeleceng.2020.106576; Wang, S., & Dehghanian, P. (2020). On the use of artificial intelligence for high impedance fault detection and electrical safety. IEEE Transactions on Industry Applications, 56(6), 7208–7216. https://doi.org/10.1109/TIA.2020.3017698; Yousaf, M. Z., Liu, H., Raza, A., & Baig, M. B. (2020). Primary and backup fault detection techniques for multi-terminal HVdc systems: A review. IET Generation, Transmission & Distribution, 14(22), 5261–5276. https://doi.org/10.1049/iet-gtd.2020.0060; https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260
الاتاحة: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260
Rights: Derechos de autor 2021 Yonatan F. Ochoa V., Cristian F. Penagos B. ; https://creativecommons.org/licenses/by-nc-nd/4.0/
رقم الانضمام: edsbas.EBF3E164
قاعدة البيانات: BASE