Relation: |
https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260/18119; Abubakar, U., Mekhilef, S., Gaeid, K. S., Mokhlis, H., & Mashhadany, Y. I. A. (2020). Induction motor fault detection based on multi-sensory control and wavelet analysis. IET Electric Power Applications, 14(11), 2051–2061. https://doi.org/10.1049/iet -epa.2020.0030; Adly, A. R., Aleem, S. H. E. A., Algabalawy, M. A., Jurado, F., & Ali, Z. M. (2020). A novel protection scheme for multi-terminal transmission lines based on wavelet transform. Electric Power Systems Research, 183(1), 106286. https://doi.org/10.1016/j.epsr.2020.106286; Afrasiabi, S., Afrasiabi, M., Mohammadi, M., & Parang, B. (2020). Fault localisation and diagnosis in transmission networks based on robust deep gabor convolutional neural network and PMU measurements. IET Generation, Transmission & Distribution, 14(26), 6484–6492. https://doi.org/10.1049/iet-gtd.2020.0856; Barman, J., & Hazarika, D. (2020). Linear and quadratic time–frequency analysis of vibration for fault detection and identification of NFR trains. IEEE Transactions on Instrumentation and Measurement, 69(11), 8902–8909. https://doi.org/10.1109/TIM.2020.2998888; Cherif, H., Benakcha, A., Laib, I., Chehaidia, S. E., Menacer, A., Soudan, B., & Olabi, A. (2020). Early detection and localization of stator inter-turn faults based on discrete wavelet energy ratio and neural networks in induction motor. Energy, 212(1), 118684. https://doi.org/10.1016/j.energy.2020.118684; Gafoor, S. A., & Rao, P. V. R. Wavelet based fault detection, classification and location in transmission lines. In: 2006 IEEE international power and energy conference. 2006, 1–6. https://doi.org/10.1109/PECON.2006.346630.; Huang, J., Gao, H., Zhao, L., & Feng, Y. (2020). Instantaneous active power integral differential protection for hybrid AC/DC transmission systems based on fault variation component. IEEE Transactions on Power Delivery, 35(6), 2791–2799. https://doi.org/10.1109/TPWRD.2020.3011459; Li, X., Wu, S., Li, X., Yuan, H., & Zhao, D. (2020). Particle swarm optimization-support vector machine model for machinery fault diagnoses in high-voltage circuit breakers. Chinese Journal of Mechanical Engineering, 33(1), 6. https://doi.org/10.1186/s10033-019-0428-5; Rafique, F., Fu, L., & Mai, R. (2021). End to end machine learning for fault detection and classification in power transmission lines. Electric Power Systems Research, 199(1), 107430. https://doi.org/10.1016/j.epsr.2021.107430; Ren, H., Hou, Z. J., Vyakaranam, B., Wang, H., & Etingov, P. (2020). Power system event classification and localization using a convolutional neural network. Frontiers in Energy Research, 8(1), 607826. https://doi.org/10.3389/fenrg.2020.607826; Rivas, A. E. L., & Abrão, T. (2020). Faults in smart grid systems: Monitoring, detection and classification. Electric Power Systems Research, 189, 106602. https://doi.org/10.1016/j.epsr.2020.106602; Saber, A., Zeineldin, H., El-Fouly, T., & Al-Durra, A. (2020). Current differential relay characteristic for bipolar HVDC transmission line fault detection. IET Generation, Transmission & Distribution, 14(23), 5505–5513. https://doi.org/10.1049/iet-gtd.2020.0556; Torres, V., Guillen, D., Olveres, J., Escalante, B., & Rodriguez, J. (2020). Modelling of high impedance faults in distribution systems and validation based on multiresolution techniques. Computers & Electrical Engineering, 83(1), 106576. https://doi.org/10.1016/j.compeleceng.2020.106576; Wang, S., & Dehghanian, P. (2020). On the use of artificial intelligence for high impedance fault detection and electrical safety. IEEE Transactions on Industry Applications, 56(6), 7208–7216. https://doi.org/10.1109/TIA.2020.3017698; Yousaf, M. Z., Liu, H., Raza, A., & Baig, M. B. (2020). Primary and backup fault detection techniques for multi-terminal HVdc systems: A review. IET Generation, Transmission & Distribution, 14(22), 5261–5276. https://doi.org/10.1049/iet-gtd.2020.0060; https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260 |