Academic Journal
Relative humidity effect on encapsulation properties of coproducts obtained from wet milling of amaranth grain ; Efecto de la humedad relativa en la capacidad encapsulante de los coproductos de la molienda humeda del grano de amaranto ; efeito da umidade relativa sobre a capacidade de encapsulamento dos co-produtos da retificação humida do grão amaranto
العنوان: | Relative humidity effect on encapsulation properties of coproducts obtained from wet milling of amaranth grain ; Efecto de la humedad relativa en la capacidad encapsulante de los coproductos de la molienda humeda del grano de amaranto ; efeito da umidade relativa sobre a capacidade de encapsulamento dos co-produtos da retificação humida do grão amaranto |
---|---|
المؤلفون: | Roa Acosta, Diego Fernando, Nieto Calvache, Jhon Edinson, Agudelo Laverde, Lina Marcela |
المصدر: | Biotechnology in the Agricultural and Agroindustrial Sector; Vol. 19 No. 1 (2021): January to June; 32-44 ; Biotecnología en el Sector Agropecuario y Agroindustrial; Vol. 19 Núm. 1 (2021): Enero a Junio; 32-44 ; 1909-9959 ; 1692-3561 |
بيانات النشر: | Universidad del Cauca -Facultad de ciencias Agrarias |
سنة النشر: | 2020 |
المجموعة: | Portal de Revistas Universidad del Cauca |
مصطلحات موضوعية: | Encapsulating Agent, β-carotene, Amaranth Starch, Amaranth Flour, Planetary Ball Milling, Wet milling, Carotenoids, Agente Encapsulante, β-caroteno, Almidón de Amaranto, Harina de Amaranto, Molino Planetario, Molienda húmeda, Carotenoides, Amido de Amaranto, Farinha de Amaranto, Moinho Planetário, Retificação humida, Carotenóides |
الوصف: | The co-products of the amaranth starch extraction have recently aroused the interest of the industry, mainly due to their functional characteristics. In this paper, the encapsulating efficiencies of starch-enriched fraction (SEF) and native starch (NS) obtained, respectively, by dry or wet milling were studied. The storage humidity effect (11 to 84%, 21 days) on β-carotene retention were evaluated. Significant effects of amaranth protein present in SEF matrix on emulsification and subsequent retention of β-carotene were found. The best encapsulation performance was showed by ball milled starch enriched fraction (SEF-BM) fraction, with up to three times of total β-carotene content in comparison with the NS containing matrices. The glass transition temperature (Tg) of the samples decreased with the increase in relative humidity due to the plasticizing effect of the water. The starch-enriched amaranth fraction showed a high technological potential as an encapsulating agent and its own protein content served as a good emulsifier-stabilizer. ; Los coproductos de la extracción del almidón de amaranto han despertado recientemente el interés de la industria, principalmente debido a sus características funcionales. En este trabajo se investigó la eficiencia de encapsulación de un harina (SEF) y el almidón nativo (NS) obtenidos mediante molienda abrasiva y húmeda, respectivamente. Se evaluaron los efectos de la humedad de almacenamiento (11 a 84%, por 21 días) sobre la retención del β-caroteno encapsulado y superficial. Se encontraron efectos significativos de la proteína de amaranto presente en la harina molida SEF-BM sobre la emulsificación y la posterior retención de β-caroteno. La matriz SEF-BM mostró el mejor rendimiento de encapsulación, con tres veces el contenido total de β-caroteno en comparación con las matrices que contenía NS. La temperatura de transición vítrea (Tg) de las muestras disminuyó con el aumento de la humedad relativa debido al efecto plastificante del agua, lo que provocó un aumento en su ... |
نوع الوثيقة: | article in journal/newspaper |
وصف الملف: | application/pdf; text/xml |
اللغة: | English Spanish; Castilian |
Relation: | https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1501/1458; https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1501/1469; NIETO-CALVACHE, JHON; CUETO, MARIO; FARRONI, ABEL; DE ESCALADA-PLA, MARINA; GERSCHENSON, LÍA-NOEMI. Antioxidant characterization of new dietary fiber concentrates from papaya pulp and peel (Carica papaya L). Journal of Functional Foods, v. 27, 2016, p. 319-328. https://doi.org/10.1016/j.jff.2016.09.012; VARGAS-MURGA, LILIANA; DE ROSSO, VERIDIANA; MERCADANTE, ADRIANA; OLMEDILLA-ALONSO, BEGOÑA. Fruits and vegetables in the Brazilian Household Budget Survey (2008–2009): carotenoid content and assessment of individual carotenoid intake. Journal of Food Composition and Analysis, v. 50, 2016, p. 88-96. https://doi.org/10.1016/j.jfca.2016.05.012; MÜLLER, LARS; CARIS-VEYRAT, CATHERINE; LOWE, GORDON; BÖHM, VOLKER. Lycopene and its antioxidant role in the prevention of cardiovascular diseases a critical review. Critical Reviews in Food Science and Nutrition, v. 56, n. 11, 2016, p. 1868-1879. https://doi.org/10.1080/10408398.2013.801827; JANISZEWSKA-TURAK, EMILIA. Carotenoids microencapsulation by spray drying method and supercritical micronization. Food research international, v. 99, 2017, p. 891-901. https://doi.org/10.1016/j.foodres.2017.02.001; URSACHE, FLORENTINA-MIHAELA; ANDRONOIU, DOINA-GEORGETA; GHINEA, IOANA-OTILIA; BARBU, VASILICA; IONIŢĂ, ELENA; COTÂRLEŢ, MIHAELA; DUMITRASCU, LOREDANA; BOTEZ, ELISABETA; RĂPEANU, GABRIELA; STĂNCIUC, NICOLETA. Valorizations of carotenoids from sea buckthorn extract by microencapsulation and formulation of value-added food products. Journal of Food Engineering, v. 219, 2018, p. 16-24. https://doi.org/10.1016/j.jfoodeng.2017.09.015; GÓMEZ, C.A.; CASTRO, J.; RANGEL, E.; NAVARRO, R.O.; CABRERA, Z.E.; DÍAZ, L.; MARTÍNEZ, F.; GUZMÁN, F.A.; FALFAN, R.N. A modified Achira (Canna indica L.) starch as a wall material for the encapsulation of Hibiscus sabdariffa extract using spray drying. Food Research International, v. 119, 2019, p. 547-553. https://doi.org/10.1016/j.foodres.2018.10.031; ZHU, FAN. Encapsulation and delivery of food ingredients using starch-based systems. Food Chemistry, v. 229, 2017, p. 542–552. https://doi.org/10.1016/j.foodchem.2017.02.101; AGUIAR, J.; ESTEVINHO, B.N.; SANTOS, L. Microencapsulation of natural antioxidants for food application - The specific case of coffee antioxidants. A review. Trends in Food Science and Technology, v. 58, 2016, p. 21-39. https://doi.org/10.1016/j.tifs.2016.10.012; XU, YAFENG; WANG, CHAN; FU, XIONG; HUANG, QIANG; ZHANG, BIN. Effect of pH and ionic strength on the emulsifying properties of two Octenylsuccinate starches in comparison with gum Arabic. Food Hydrocolloids, v. 76, 2018, p. 96-102. https://doi.org/10.1016/j.foodhyd.2017.02.015; TALÓN, EMMA; VARGAS, MARÍA; CHIRALT, AMPARO; GONZÁLEZ-MARTINEZ, CHELO. Eugenol incorporation into thermoprocessed starch films using different encapsulating materials. Food Packaging and Shelf Life, v. 21, 2019, p. 100326. https://doi.org/10.1016/j.fpsl.2019.100326; JIN, YANGYANG; LI, JASON; NIK, AMIR-MALAKI. Starch-based microencapsulation. Starch in Food, 2018, p. 661-690. https://doi.org/10.1016/B978-0-08-100868-3.00017-2; ROA, DIEGO; BUERA, PILAR; TOLABA, MARCELA; SANTAGAPITA, PATRICIO. Encapsulation and stabilization of β- carotene in amaranth matrices obtained by dry and wet assisted ball milling. Food and Bioprocess Technology, v. 10, 2017, p. 512-521. https://doi.org/10.1007/s11947-016-1830-y; HOYOS-LEYVA, JAVIER D., BELLO-PÉREZ, LUIS A.; ALVAREZ-RAMIREZ, J.; GARCIA, HUGO S. Microencapsulation using starch as wall material: A review. Food reviews international, v. 34, n. 2, 2018, p. 148-161. https://doi.org/10.1080/87559129.2016.1261298; DE BARROS-FERNANDES, REGIANE-VICTÓRIA; COSTA-GUIMARÃES, ISABELA; RODRIGUES-FERREIRA, CHRISTIANE-LARA; ALVARENGA-BOTREL, DIEGO; VILELA-BORGES, SORAIA; DE SOUZA, AMANDA-UMBELINA. Microencapsulated Rosemary (Rosmarinus officinalis) essential oil as a biopreservative in minas frescal cheese. Journal of Food Processing and Preservation, v. 41, n. 1, 2019, p. 12759. https://doi.org/10.1111/jfpp.12759; GORDON, MANFRED; TAYLOR, JAMES S. Ideal copolymers and the 2nd order transitions of synthetic rubbers. Non-crystalline copolymers. Journal of Applied Chemistry, v. 2, n. 2, 1952, p. 493-500. https://doi.org/10.1002/jctb.5010020901; LABUZA, T.P.; NALLY, L.; GALLAGHER, D.; HAWKES, J.; HURTADO, F. Stability of intermediate moisture foods. Lipid oxidation. Journal of Food Science, v. 37, n. 1, 1972, p. 154-159. https://doi.org/10.1111/j.1365-2621.1972.tb03408.x; GOLMAN, M.; HOREV, B.; SAM-SAGUY, I. Decolorization of β-Carotene in Model Systems Simulating Dehydrated Foods. Mechanism and Kinetic Principles, 1983, p. 52. https://doi.org/10.1111/j.1365-2621.1983.tb14890.x; VAN DEN BERG, C.; BRUIN, S. Water activity and its estimation in food systems: Theoretical aspects. In: Water Activity: Influence on Food Quality. L. Rockland and G. Stewart. New York (USA): Academic Press, 1981, p. 1-61.; FURMANIAK, SYLWESTER; TERZYK, ARTUR P.; GOLEMBIEWSKI, ROMAN; GAUDEN, PIOTR A.; CZEPIRSKI, LESZEK. Searching the most optimal model of water sorption on foodstuffs in thewhole range of relative humidity. Food Research International, v. 42, n. 8, 2009, p. 1203-1214. https://doi.org/10.1016/j.foodres.2009.06.004; SPERLING, L.H. Introduction to Physical Polymer Science. New York (USA): John Wiley & Sons, 1986, p.46-48; JOUPPILA, K.; ROOS, Y. The physical state of amorphous corn starch and its impact on crystallization. Carbohydrate Polymers, v. 32, n. 2, 1997, p. 95. https://doi.org/10.1016/S0144-8617(96)00175-0; ZHONG, ZHIKAI; SUN, SUSAN. Thermal characterization and phase behavior of cornstarch studied by differential scanning calorimetry. Journal of Food Engineering, v. 69, n. 4, 2005, p. 453-459. https://doi.org/10.1016/j.jfoodeng.2004.07.023; KATKOV, IGOR I.; LEVINE, FRED. Prediction of the glass transition temperature of water solutions: comparison of different models. Cryobiology, v. 49, n. 1, 2004, p. 62-67. https://doi.org/10.1016/j.cryobiol.2004.05.004; FONSECA-FLORIDO, HEIDI A.; GÓMEZ-ALDAPA, CARLOS A.; VELAZQUEZ, GONZALO; HERNÁNDEZ-HERNÁNDEZ, ERNESTO; MATA-PADILLA, JOSÉ M.; SOLÍS-ROSALES, SILVIA G.; MÉNDEZ-MONTEALVO, GUADALUPE. Gelling of amaranth and achira starch blends in excess and limited water. LWT-Food Science and Technology, v. 81, 2017, p. 265–273. https://doi.org/10.1016/j.lwt.2017.03.061; OCHOA-VELASCO, C.E.; SALAZAR-GONZÁLEZ, C.; CID-ORTEGA, S.; GUERRERO-BELTRÁN, J.A. Antioxidant characteristics of extracts of Hibiscus sabdariffa calyces encapsulated with mesquite gum. Journal of Food Science and Technology, v. 54, n. 7, 2017, p. 1747–1756. https://doi.org/10.1007/s13197-017-2564-1; https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1501 |
DOI: | 10.18684/bsaa.v19.n1.2021.1501 |
الاتاحة: | https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1501 https://doi.org/10.18684/bsaa.v19.n1.2021.1501 |
Rights: | Derechos de autor 2020 Universidad del Cauca ; info:eu-repo/semantics/openAccess ; https://creativecommons.org/licenses/by-nc-nd/4.0 |
رقم الانضمام: | edsbas.EAB87F65 |
قاعدة البيانات: | BASE |
DOI: | 10.18684/bsaa.v19.n1.2021.1501 |
---|