Academic Journal

Recurrent neural network models (CovRNN) for predicting outcomes of patients with COVID-19 on admission to hospital: model development and validation using electronic health record data

التفاصيل البيبلوغرافية
العنوان: Recurrent neural network models (CovRNN) for predicting outcomes of patients with COVID-19 on admission to hospital: model development and validation using electronic health record data
المؤلفون: Rasmy, Laila, Nigo, Masayuki, Kannadath, Bijun Sai, Xie, Ziqian, Mao, Bingyu, Patel, Khush, Zhou, Yujia, Zhang, Wanheng, Ross, Angela, Xu, Hua, Zhi, Degui
المصدر: The Lancet Digital Health ; volume 4, issue 6, page e415-e425 ; ISSN 2589-7500
بيانات النشر: Elsevier BV
سنة النشر: 2022
المجموعة: ScienceDirect (Elsevier - Open Access Articles via Crossref)
نوع الوثيقة: article in journal/newspaper
اللغة: English
DOI: 10.1016/s2589-7500(22)00049-8
الاتاحة: http://dx.doi.org/10.1016/s2589-7500(22)00049-8
https://api.elsevier.com/content/article/PII:S2589750022000498?httpAccept=text/xml
https://api.elsevier.com/content/article/PII:S2589750022000498?httpAccept=text/plain
Rights: https://www.elsevier.com/tdm/userlicense/1.0/ ; http://creativecommons.org/licenses/by/4.0/
رقم الانضمام: edsbas.E7EFFAC9
قاعدة البيانات: BASE
الوصف
DOI:10.1016/s2589-7500(22)00049-8